skopt.plots
.plot_objective¶
-
skopt.plots.
plot_objective
(result, levels=10, n_points=40, n_samples=250, size=2, zscale='linear', dimensions=None, sample_source='random', minimum='result', n_minimum_search=None)[source][source]¶ Pairwise dependence plot of the objective function.
The diagonal shows the partial dependence for dimension
i
with respect to the objective function. The off-diagonal shows the partial dependence for dimensionsi
andj
with respect to the objective function. The objective function is approximated byresult.model.
Pairwise scatter plots of the points at which the objective function was directly evaluated are shown on the off-diagonal. A red point indicates per default the best observed minimum, but this can be changed by changing argument ´minimum´.
- Parameters
- result
OptimizeResult
The result for which to create the scatter plot matrix.
- levelsint, default=10
Number of levels to draw on the contour plot, passed directly to
plt.contour()
.- n_pointsint, default=40
Number of points at which to evaluate the partial dependence along each dimension.
- n_samplesint, default=250
Number of samples to use for averaging the model function at each of the
n_points
whensample_method
is set to ‘random’.- sizefloat, default=2
Height (in inches) of each facet.
- zscalestr, default=’linear’
Scale to use for the z axis of the contour plots. Either ‘linear’ or ‘log’.
- dimensionslist of str, default=None
Labels of the dimension variables.
None
defaults tospace.dimensions[i].name
, or if alsoNone
to['X_0', 'X_1', ..]
.- sample_sourcestr or list of floats, default=’random’
Defines to samples generation to use for averaging the model function at each of the
n_points
.A partial dependence plot is only generated, when
sample_source
is set to ‘random’ andn_samples
is sufficient.sample_source
can also be a list of floats, which is then used for averaging.Valid strings:
‘random’ -
n_samples
random samples will used‘result’ - Use only the best observed parameters
- ‘expected_minimum’ - Parameters that gives the best
minimum Calculated using scipy’s minimize method. This method currently does not work with categorical values.
- ‘expected_minimum_random’ - Parameters that gives the
best minimum when using naive random sampling. Works with categorical values.
- minimumstr or list of floats, default = ‘result’
Defines the values for the red points in the plots. Valid strings:
‘result’ - Use best observed parameters
- ‘expected_minimum’ - Parameters that gives the best
minimum Calculated using scipy’s minimize method. This method currently does not work with categorical values.
- ‘expected_minimum_random’ - Parameters that gives the
best minimum when using naive random sampling. Works with categorical values
- n_minimum_searchint, default = None
Determines how many points should be evaluated to find the minimum when using ‘expected_minimum’ or ‘expected_minimum_random’. Parameter is used when
sample_source
and/orminimum
is set to ‘expected_minimum’ or ‘expected_minimum_random’.
- result
- Returns
- ax
Axes
The matplotlib axes.
- ax