Note
Click here to download the full example code or to run this example in your browser via Binder
Comparing initial sampling methods on integer space
Holger Nahrstaedt 2020 Sigurd Carlsen October 2019
When doing baysian optimization we often want to reserve some of the
early part of the optimization to pure exploration. By default the
optimizer suggests purely random samples for the first n_initial_points
(10 by default). The downside to this is that there is no guarantee that
these samples are spread out evenly across all the dimensions.
Sampling methods as Latin hypercube, Sobol, Halton and Hammersly
take advantage of the fact that we know beforehand how many random
points we want to sample. Then these points can be “spread out” in
such a way that each dimension is explored.
See also the example on a real space
sphx_glr_auto_examples_initial_sampling_method.py
print(__doc__)
import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt
from skopt.space import Space
from skopt.sampler import Sobol
from skopt.sampler import Lhs
from skopt.sampler import Halton
from skopt.sampler import Hammersly
from skopt.sampler import Grid
from scipy.spatial.distance import pdist
def plot_searchspace(x, title):
fig, ax = plt.subplots()
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bs', markersize=40, alpha=0.5)
# ax.legend(loc="best", numpoints=1)
ax.set_xlabel("X1")
ax.set_xlim([0, 5])
ax.set_ylabel("X2")
ax.set_ylim([0, 5])
plt.title(title)
ax.grid(True)
n_samples = 10
space = Space([(0, 5), (0, 5)])
Random sampling
x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("random")
Out:
Sobol
sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Sobol')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("sobol")
Out:
Classic latin hypercube sampling
lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
Out:
Centered latin hypercube sampling
lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("center")
Out:
Maximin optimized hypercube sampling
lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
Out:
Correlation optimized hypercube sampling
lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
Out:
Ratio optimized hypercube sampling
lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
Out:
Halton sampling
halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
Out:
Hammersly sampling
hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
Out:
Grid sampling
grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
Out:
Pdist boxplot of all methods
This boxplot shows the distance between all generated points using
Euclidian distance. The higher the value, the better the sampling method.
It can be seen that random has the worst performance
fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 6)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)
Total running time of the script: ( 0 minutes 10.339 seconds)
Estimated memory usage: 8 MB
Gallery generated by Sphinx-Gallery