import numbers
import numpy as np
import yaml
from scipy.stats.distributions import randint
from scipy.stats.distributions import rv_discrete
from scipy.stats.distributions import uniform
from sklearn.utils import check_random_state
from sklearn.utils.fixes import sp_version
from .transformers import CategoricalEncoder
from .transformers import StringEncoder
from .transformers import LabelEncoder
from .transformers import Normalize
from .transformers import Identity
from .transformers import LogN
from .transformers import Pipeline
# helper class to be able to print [1, ..., 4] instead of [1, '...', 4]
class _Ellipsis:
def __repr__(self):
return '...'
def _transpose_list_array(x):
"""Transposes a list matrix
"""
n_dims = len(x)
assert n_dims > 0
n_samples = len(x[0])
rows = [None] * n_samples
for i in range(n_samples):
r = [None] * n_dims
for j in range(n_dims):
r[j] = x[j][i]
rows[i] = r
return rows
[docs]def check_dimension(dimension, transform=None):
"""Turn a provided dimension description into a dimension object.
Checks that the provided dimension falls into one of the
supported types. For a list of supported types, look at
the documentation of ``dimension`` below.
If ``dimension`` is already a ``Dimension`` instance, return it.
Parameters
----------
dimension : Dimension
Search space Dimension.
Each search dimension can be defined either as
- a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(lower_bound, upper_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
transform : "identity", "normalize", "string", "label", "onehot" optional
- For `Categorical` dimensions, the following transformations are
supported.
- "onehot" (default) one-hot transformation of the original space.
- "label" integer transformation of the original space
- "string" string transformation of the original space.
- "identity" same as the original space.
- For `Real` and `Integer` dimensions, the following transformations
are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between 0 and 1.
Returns
-------
dimension : Dimension
Dimension instance.
"""
if isinstance(dimension, Dimension):
return dimension
if not isinstance(dimension, (list, tuple, np.ndarray)):
raise ValueError("Dimension has to be a list or tuple.")
# A `Dimension` described by a single value is assumed to be
# a `Categorical` dimension. This can be used in `BayesSearchCV`
# to define subspaces that fix one value, e.g. to choose the
# model type, see "sklearn-gridsearchcv-replacement.py"
# for examples.
if len(dimension) == 1:
return Categorical(dimension, transform=transform)
if len(dimension) == 2:
if any([isinstance(d, (str, bool)) or isinstance(d, np.bool_)
for d in dimension]):
return Categorical(dimension, transform=transform)
elif all([isinstance(dim, numbers.Integral) for dim in dimension]):
return Integer(*dimension, transform=transform)
elif any([isinstance(dim, numbers.Real) for dim in dimension]):
return Real(*dimension, transform=transform)
else:
raise ValueError("Invalid dimension {}. Read the documentation for"
" supported types.".format(dimension))
if len(dimension) == 3:
if (any([isinstance(dim, int) for dim in dimension[:2]]) and
dimension[2] in ["uniform", "log-uniform"]):
return Integer(*dimension, transform=transform)
elif (any([isinstance(dim, (float, int)) for dim in dimension[:2]]) and
dimension[2] in ["uniform", "log-uniform"]):
return Real(*dimension, transform=transform)
else:
return Categorical(dimension, transform=transform)
if len(dimension) == 4:
if (any([isinstance(dim, int) for dim in dimension[:2]]) and
dimension[2] == "log-uniform" and isinstance(dimension[3],
int)):
return Integer(*dimension, transform=transform)
elif (any([isinstance(dim, (float, int)) for dim in dimension[:2]]) and
dimension[2] == "log-uniform" and isinstance(dimension[3], int)):
return Real(*dimension, transform=transform)
if len(dimension) > 3:
return Categorical(dimension, transform=transform)
raise ValueError("Invalid dimension {}. Read the documentation for "
"supported types.".format(dimension))
[docs]class Dimension(object):
"""Base class for search space dimensions."""
prior = None
[docs] def rvs(self, n_samples=1, random_state=None):
"""Draw random samples.
Parameters
----------
n_samples : int or None
The number of samples to be drawn.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
"""
rng = check_random_state(random_state)
samples = self._rvs.rvs(size=n_samples, random_state=rng)
return self.inverse_transform(samples)
def set_transformer(self):
raise NotImplementedError
@property
def size(self):
return 1
@property
def transformed_size(self):
return 1
@property
def bounds(self):
raise NotImplementedError
@property
def is_constant(self):
raise NotImplementedError
@property
def transformed_bounds(self):
raise NotImplementedError
@property
def name(self):
return self._name
@name.setter
def name(self, value):
if isinstance(value, str) or value is None:
self._name = value
else:
raise ValueError("Dimension's name must be either string or None.")
def _uniform_inclusive(loc=0.0, scale=1.0):
# like scipy.stats.distributions but inclusive of `high`
# XXX scale + 1. might not actually be a float after scale if
# XXX scale is very large.
return uniform(loc=loc, scale=np.nextafter(scale, scale + 1.))
[docs]class Real(Dimension):
"""Search space dimension that can take on any real value.
Parameters
----------
low : float
Lower bound (inclusive).
high : float
Upper bound (inclusive).
prior : "uniform" or "log-uniform", default="uniform"
Distribution to use when sampling random points for this dimension.
- If `"uniform"`, points are sampled uniformly between the lower
and upper bounds.
- If `"log-uniform"`, points are sampled uniformly between
`log(lower, base)` and `log(upper, base)` where log
has base `base`.
base : int
The logarithmic base to use for a log-uniform prior.
- Default 10, otherwise commonly 2.
transform : "identity", "normalize", optional
The following transformations are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between
0 and 1.
name : str or None
Name associated with the dimension, e.g., "learning rate".
dtype : str or dtype, default=np.float
float type which will be used in inverse_transform,
can be float.
"""
[docs] def __init__(self, low, high, prior="uniform", base=10, transform=None,
name=None, dtype=np.float):
if high <= low:
raise ValueError("the lower bound {} has to be less than the"
" upper bound {}".format(low, high))
self.low = low
self.high = high
self.prior = prior
self.base = base
self.log_base = np.log10(base)
self.name = name
self.dtype = dtype
self._rvs = None
self.transformer = None
self.transform_ = transform
if isinstance(self.dtype, str) and self.dtype\
not in ['float', 'float16', 'float32', 'float64']:
raise ValueError("dtype must be 'float', 'float16', 'float32'"
"or 'float64'"
" got {}".format(self.dtype))
elif isinstance(self.dtype, type) and self.dtype\
not in [float, np.float, np.float16, np.float32, np.float64]:
raise ValueError("dtype must be float, np.float"
" got {}".format(self.dtype))
if transform is None:
transform = "identity"
self.set_transformer(transform)
def __eq__(self, other):
return (type(self) is type(other) and
np.allclose([self.low], [other.low]) and
np.allclose([self.high], [other.high]) and
self.prior == other.prior and
self.transform_ == other.transform_)
def __repr__(self):
return "Real(low={}, high={}, prior='{}', transform='{}')".format(
self.low, self.high, self.prior, self.transform_)
@property
def bounds(self):
return (self.low, self.high)
@property
def is_constant(self):
return self.low == self.high
def __contains__(self, point):
if isinstance(point, list):
point = np.array(point)
return self.low <= point <= self.high
@property
def transformed_bounds(self):
if self.transform_ == "normalize":
return 0.0, 1.0
else:
if self.prior == "uniform":
return self.low, self.high
else:
return np.log10(self.low), np.log10(self.high)
[docs] def distance(self, a, b):
"""Compute distance between point `a` and `b`.
Parameters
----------
a : float
First point.
b : float
Second point.
"""
if not (a in self and b in self):
raise RuntimeError("Can only compute distance for values within "
"the space, not %s and %s." % (a, b))
return abs(a - b)
[docs]class Integer(Dimension):
"""Search space dimension that can take on integer values.
Parameters
----------
low : int
Lower bound (inclusive).
high : int
Upper bound (inclusive).
prior : "uniform" or "log-uniform", default="uniform"
Distribution to use when sampling random integers for
this dimension.
- If `"uniform"`, integers are sampled uniformly between the lower
and upper bounds.
- If `"log-uniform"`, integers are sampled uniformly between
`log(lower, base)` and `log(upper, base)` where log
has base `base`.
base : int
The logarithmic base to use for a log-uniform prior.
- Default 10, otherwise commonly 2.
transform : "identity", "normalize", optional
The following transformations are supported.
- "identity", (default) the transformed space is the same as the
original space.
- "normalize", the transformed space is scaled to be between
0 and 1.
name : str or None
Name associated with dimension, e.g., "number of trees".
dtype : str or dtype, default=np.int64
integer type which will be used in inverse_transform,
can be int, np.int16, np.uint32, np.int32, np.int64 (default).
When set to int, `inverse_transform` returns a list instead of
a numpy array
"""
[docs] def __init__(self, low, high, prior="uniform", base=10, transform=None,
name=None, dtype=np.int64):
if high <= low:
raise ValueError("the lower bound {} has to be less than the"
" upper bound {}".format(low, high))
self.low = low
self.high = high
self.prior = prior
self.base = base
self.log_base = np.log10(base)
self.name = name
self.dtype = dtype
self.transform_ = transform
self._rvs = None
self.transformer = None
if isinstance(self.dtype, str) and self.dtype\
not in ['int', 'int8', 'int16', 'int32', 'int64',
'uint8', 'uint16', 'uint32', 'uint64']:
raise ValueError("dtype must be 'int', 'int8', 'int16',"
"'int32', 'int64', 'uint8',"
"'uint16', 'uint32', or"
"'uint64', but got {}".format(self.dtype))
elif isinstance(self.dtype, type) and self.dtype\
not in [int, np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64]:
raise ValueError("dtype must be 'int', 'np.int8', 'np.int16',"
"'np.int32', 'np.int64', 'np.uint8',"
"'np.uint16', 'np.uint32', or"
"'np.uint64', but got {}".format(self.dtype))
if transform is None:
transform = "identity"
self.set_transformer(transform)
def __eq__(self, other):
return (type(self) is type(other) and
np.allclose([self.low], [other.low]) and
np.allclose([self.high], [other.high]))
def __repr__(self):
return "Integer(low={}, high={}, prior='{}', transform='{}')".format(
self.low, self.high, self.prior, self.transform_)
@property
def bounds(self):
return (self.low, self.high)
@property
def is_constant(self):
return self.low == self.high
def __contains__(self, point):
if isinstance(point, list):
point = np.array(point)
return self.low <= point <= self.high
@property
def transformed_bounds(self):
if self.transform_ == "normalize":
return 0., 1.
else:
return (self.low, self.high)
[docs] def distance(self, a, b):
"""Compute distance between point `a` and `b`.
Parameters
----------
a : int
First point.
b : int
Second point.
"""
if not (a in self and b in self):
raise RuntimeError("Can only compute distance for values within "
"the space, not %s and %s." % (a, b))
return abs(a - b)
[docs]class Categorical(Dimension):
"""Search space dimension that can take on categorical values.
Parameters
----------
categories : list, shape=(n_categories,)
Sequence of possible categories.
prior : list, shape=(categories,), default=None
Prior probabilities for each category. By default all categories
are equally likely.
transform : "onehot", "string", "identity", "label", default="onehot"
- "identity", the transformed space is the same as the original
space.
- "string", the transformed space is a string encoded
representation of the original space.
- "label", the transformed space is a label encoded
representation (integer) of the original space.
- "onehot", the transformed space is a one-hot encoded
representation of the original space.
name : str or None
Name associated with dimension, e.g., "colors".
"""
[docs] def __init__(self, categories, prior=None, transform=None, name=None):
self.categories = tuple(categories)
self.name = name
if transform is None:
transform = "onehot"
self.transform_ = transform
self.transformer = None
self._rvs = None
self.prior = prior
if prior is None:
self.prior_ = np.tile(1. / len(self.categories),
len(self.categories))
else:
self.prior_ = prior
self.set_transformer(transform)
def __eq__(self, other):
return (type(self) is type(other) and
self.categories == other.categories and
np.allclose(self.prior_, other.prior_))
def __repr__(self):
if len(self.categories) > 7:
cats = self.categories[:3] + (_Ellipsis(),) + self.categories[-3:]
else:
cats = self.categories
if self.prior is not None and len(self.prior) > 7:
prior = self.prior[:3] + [_Ellipsis()] + self.prior[-3:]
else:
prior = self.prior
return "Categorical(categories={}, prior={})".format(cats, prior)
[docs] def rvs(self, n_samples=None, random_state=None):
choices = self._rvs.rvs(size=n_samples, random_state=random_state)
if isinstance(choices, numbers.Integral):
return self.categories[choices]
elif self.transform_ == "normalize" and isinstance(choices, float):
return self.inverse_transform([(choices)])
elif self.transform_ == "normalize":
return self.inverse_transform(list(choices))
else:
return [self.categories[c] for c in choices]
@property
def transformed_size(self):
if self.transform_ == "onehot":
size = len(self.categories)
# when len(categories) == 2, CategoricalEncoder outputs a
# single value
return size if size != 2 else 1
return 1
@property
def bounds(self):
return self.categories
@property
def is_constant(self):
return len(self.categories) <= 1
def __contains__(self, point):
return point in self.categories
@property
def transformed_bounds(self):
if self.transformed_size == 1:
return 0.0, 1.0
else:
return [(0.0, 1.0) for i in range(self.transformed_size)]
[docs] def distance(self, a, b):
"""Compute distance between category `a` and `b`.
As categories have no order the distance between two points is one
if a != b and zero otherwise.
Parameters
----------
a : category
First category.
b : category
Second category.
"""
if not (a in self and b in self):
raise RuntimeError("Can only compute distance for values within"
" the space, not {} and {}.".format(a, b))
return 1 if a != b else 0
[docs]class Space(object):
"""Initialize a search space from given specifications.
Parameters
----------
dimensions : list, shape=(n_dims,)
List of search space dimensions.
Each search dimension can be defined either as
- a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(lower_bound, upper_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
.. note::
The upper and lower bounds are inclusive for `Integer`
dimensions.
"""
[docs] def __init__(self, dimensions):
self.dimensions = [check_dimension(dim) for dim in dimensions]
def __eq__(self, other):
return all([a == b for a, b in zip(self.dimensions, other.dimensions)])
def __repr__(self):
if len(self.dimensions) > 31:
dims = self.dimensions[:15] + [_Ellipsis()] + self.dimensions[-15:]
else:
dims = self.dimensions
return "Space([{}])".format(',\n '.join(map(str, dims)))
def __iter__(self):
return iter(self.dimensions)
@property
def dimension_names(self):
"""
Names of all the dimensions in the search-space.
"""
index = 0
names = []
for dim in self.dimensions:
if dim.name is None:
names.append("X_%d" % index)
else:
names.append(dim.name)
index += 1
return names
@property
def is_real(self):
"""
Returns true if all dimensions are Real
"""
return all([isinstance(dim, Real) for dim in self.dimensions])
[docs] @classmethod
def from_yaml(cls, yml_path, namespace=None):
"""Create Space from yaml configuration file
Parameters
----------
yml_path : str
Full path to yaml configuration file, example YaML below:
Space:
- Integer:
low: -5
high: 5
- Categorical:
categories:
- a
- b
- Real:
low: 1.0
high: 5.0
prior: log-uniform
namespace : str, default=None
Namespace within configuration file to use, will use first
namespace if not provided
Returns
-------
space : Space
Instantiated Space object
"""
with open(yml_path, 'rb') as f:
config = yaml.safe_load(f)
dimension_classes = {'real': Real,
'integer': Integer,
'categorical': Categorical}
# Extract space options for configuration file
if isinstance(config, dict):
if namespace is None:
options = next(iter(config.values()))
else:
options = config[namespace]
elif isinstance(config, list):
options = config
else:
raise TypeError('YaML does not specify a list or dictionary')
# Populate list with Dimension objects
dimensions = []
for option in options:
key = next(iter(option.keys()))
# Make configuration case insensitive
dimension_class = key.lower()
values = {k.lower(): v for k, v in option[key].items()}
if dimension_class in dimension_classes:
# Instantiate Dimension subclass and add it to the list
dimension = dimension_classes[dimension_class](**values)
dimensions.append(dimension)
space = cls(dimensions=dimensions)
return space
[docs] def rvs(self, n_samples=1, random_state=None):
"""Draw random samples.
The samples are in the original space. They need to be transformed
before being passed to a model or minimizer by `space.transform()`.
Parameters
----------
n_samples : int, default=1
Number of samples to be drawn from the space.
random_state : int, RandomState instance, or None (default)
Set random state to something other than None for reproducible
results.
Returns
-------
points : list of lists, shape=(n_points, n_dims)
Points sampled from the space.
"""
rng = check_random_state(random_state)
# Draw
columns = []
for dim in self.dimensions:
columns.append(dim.rvs(n_samples=n_samples, random_state=rng))
# Transpose
return _transpose_list_array(columns)
@property
def n_dims(self):
"""The dimensionality of the original space."""
return len(self.dimensions)
@property
def transformed_n_dims(self):
"""The dimensionality of the warped space."""
return sum([dim.transformed_size for dim in self.dimensions])
@property
def bounds(self):
"""The dimension bounds, in the original space."""
b = []
for dim in self.dimensions:
if dim.size == 1:
b.append(dim.bounds)
else:
b.extend(dim.bounds)
return b
def __contains__(self, point):
"""Check that `point` is within the bounds of the space."""
for component, dim in zip(point, self.dimensions):
if component not in dim:
return False
return True
def __getitem__(self, dimension_names):
"""
Lookup and return the search-space dimension with the given name.
This allows for dict-like lookup of dimensions, for example:
`space['foo']` returns the dimension named 'foo' if it exists,
otherwise `None` is returned.
It also allows for lookup of a list of dimension-names, for example:
`space[['foo', 'bar']]` returns the two dimensions named
'foo' and 'bar' if they exist.
Parameters
----------
dimension_names : str or list(str)
Name of a single search-space dimension (str).
List of names for search-space dimensions (list(str)).
Returns
-------
dims tuple (index, Dimension), list(tuple(index, Dimension)), \
(None, None)
A single search-space dimension with the given name,
or a list of search-space dimensions with the given names.
"""
def _get(dimension_name):
"""Helper-function for getting a single dimension."""
index = 0
# Get the index of the search-space dimension using its name.
for dim in self.dimensions:
if dimension_name == dim.name:
return (index, dim)
elif dimension_name == index:
return (index, dim)
index += 1
return (None, None)
if isinstance(dimension_names, (str, int)):
# Get a single search-space dimension.
dims = _get(dimension_name=dimension_names)
elif isinstance(dimension_names, (list, tuple)):
# Get a list of search-space dimensions.
# Note that we do not check whether the names are really strings.
dims = [_get(dimension_name=name) for name in dimension_names]
else:
msg = "Dimension name should be either string or" \
"list of strings, but got {}."
raise ValueError(msg.format(type(dimension_names)))
return dims
@property
def transformed_bounds(self):
"""The dimension bounds, in the warped space."""
b = []
for dim in self.dimensions:
if dim.transformed_size == 1:
b.append(dim.transformed_bounds)
else:
b.extend(dim.transformed_bounds)
return b
@property
def is_categorical(self):
"""Space contains exclusively categorical dimensions"""
return all([isinstance(dim, Categorical) for dim in self.dimensions])
@property
def is_partly_categorical(self):
"""Space contains any categorical dimensions"""
return any([isinstance(dim, Categorical) for dim in self.dimensions])
@property
def n_constant_dimensions(self):
"""Returns the number of constant dimensions which have zero degree of
freedom, e.g. an Integer dimensions with (0., 0.) as bounds.
"""
n = 0
for dim in self.dimensions:
if dim.is_constant:
n += 1
return n
[docs] def distance(self, point_a, point_b):
"""Compute distance between two points in this space.
Parameters
----------
point_a : array
First point.
point_b : array
Second point.
"""
distance = 0.
for a, b, dim in zip(point_a, point_b, self.dimensions):
distance += dim.distance(a, b)
return distance