skopt.utils
.expected_minimum¶
-
skopt.utils.
expected_minimum
(res, n_random_starts=20, random_state=None)[source][source]¶ Compute the minimum over the predictions of the last surrogate model. Uses
expected_minimum_random_sampling
with `n_random_starts`=100000, when the space contains any categorical values.Note
The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.
- Parameters
- res
OptimizeResult
, scipy object The optimization result returned by a
skopt
minimizer.- n_random_startsint, default=20
The number of random starts for the minimization of the surrogate model.
- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.
- res
- Returns
- xlist
location of the minimum.
- funfloat
the surrogate function value at the minimum.