skopt.space.space.Real

class skopt.space.space.Real(low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'float'>)[source][source]

Search space dimension that can take on any real value.

Parameters
lowfloat

Lower bound (inclusive).

highfloat

Upper bound (inclusive).

prior“uniform” or “log-uniform”, default=”uniform”

Distribution to use when sampling random points for this dimension. - If "uniform", points are sampled uniformly between the lower

and upper bounds.

  • If "log-uniform", points are sampled uniformly between log(lower, base) and log(upper, base) where log has base base.

baseint

The logarithmic base to use for a log-uniform prior. - Default 10, otherwise commonly 2.

transform“identity”, “normalize”, optional

The following transformations are supported.

  • “identity”, (default) the transformed space is the same as the original space.

  • “normalize”, the transformed space is scaled to be between 0 and 1.

namestr or None

Name associated with the dimension, e.g., “learning rate”.

dtypestr or dtype, default=np.float

float type which will be used in inverse_transform, can be float.

Attributes
bounds
name
prior
size
transformed_bounds
transformed_size

Methods

distance(self, a, b)

Compute distance between point a and b.

inverse_transform(self, Xt)

Inverse transform samples from the warped space back into the original space.

rvs(self[, n_samples, random_state])

Draw random samples.

transform(self, X)

Transform samples form the original space to a warped space.

__init__(self, low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'float'>)[source][source]

Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)[source][source]

Compute distance between point a and b.

Parameters
afloat

First point.

bfloat

Second point.

inverse_transform(self, Xt)[source][source]

Inverse transform samples from the warped space back into the original space.

rvs(self, n_samples=1, random_state=None)[source]

Draw random samples.

Parameters
n_samplesint or None

The number of samples to be drawn.

random_stateint, RandomState instance, or None (default)

Set random state to something other than None for reproducible results.

transform(self, X)[source]

Transform samples form the original space to a warped space.