skopt.learning
.GradientBoostingQuantileRegressor¶
-
class
skopt.learning.
GradientBoostingQuantileRegressor
(quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None)[source][source]¶ Predict several quantiles with one estimator.
This is a wrapper around
GradientBoostingRegressor
’s quantile regression that allows you to predict severalquantiles
in one go.- Parameters
- quantilesarray-like
Quantiles to predict. By default the 16, 50 and 84% quantiles are predicted.
- base_estimatorGradientBoostingRegressor instance or None (default)
Quantile regressor used to make predictions. Only instances of
GradientBoostingRegressor
are supported. Use this to change the hyper-parameters of the estimator.- n_jobsint, default=1
The number of jobs to run in parallel for
fit
. If -1, then the number of jobs is set to the number of cores.- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.
Methods
fit
(self, X, y)Fit one regressor for each quantile.
get_params
(self[, deep])Get parameters for this estimator.
predict
(self, X[, return_std, return_quantiles])Predict.
score
(self, X, y[, sample_weight])Return the coefficient of determination R^2 of the prediction.
set_params
(self, \*\*params)Set the parameters of this estimator.
-
__init__
(self, quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X, y)[source][source]¶ Fit one regressor for each quantile.
- Parameters
- Xarray-like, shape=(n_samples, n_features)
Training vectors, where
n_samples
is the number of samples andn_features
is the number of features.- yarray-like, shape=(n_samples,)
Target values (real numbers in regression)
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
predict
(self, X, return_std=False, return_quantiles=False)[source][source]¶ Predict.
Predict
X
at every quantile ifreturn_std
is set to False. Ifreturn_std
is set to True, then return the mean and the predicted standard deviation, which is approximated as the (0.84th quantile - 0.16th quantile) divided by 2.0- Parameters
- Xarray-like, shape=(n_samples, n_features)
where
n_samples
is the number of samples andn_features
is the number of features.
-
score
(self, X, y, sample_weight=None)[source]¶ Return the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.
- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
R^2 of self.predict(X) wrt. y.
Notes
The R2 score used when calling
score
on a regressor will usemultioutput='uniform_average'
from version 0.23 to keep consistent withr2_score()
. This will influence thescore
method of all the multioutput regressors (except forMultiOutputRegressor
). To specify the default value manually and avoid the warning, please either callr2_score()
directly or make a custom scorer withmake_scorer()
(the built-in scorer'r2'
usesmultioutput='uniform_average'
).
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfobject
Estimator instance.