skopt
.expected_minimum_random_sampling¶
-
skopt.
expected_minimum_random_sampling
(res, n_random_starts=100000, random_state=None)[source][source]¶ Minimum search by doing naive random sampling, Returns the parameters that gave the minimum function value. Can be used when the space contains any categorical values.
Note
The returned minimum may not necessarily be an accurate prediction of the minimum of the true objective function.
- Parameters
- res
OptimizeResult
, scipy object The optimization result returned by a
skopt
minimizer.- n_random_startsint, default=100000
The number of random starts for the minimization of the surrogate model.
- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.
- res
- Returns
- xlist
location of the minimum.
- funfloat
the surrogate function value at the minimum.