skopt.Space¶
-
class
skopt.Space(dimensions)[source][source]¶ Initialize a search space from given specifications.
- Parameters
- dimensionslist, shape=(n_dims,)
List of search space dimensions. Each search dimension can be defined either as
a
(lower_bound, upper_bound)tuple (forRealorIntegerdimensions),a
(lower_bound, upper_bound, "prior")tuple (forRealdimensions),as a list of categories (for
Categoricaldimensions), oran instance of a
Dimensionobject (Real,IntegerorCategorical).
Note
The upper and lower bounds are inclusive for
Integerdimensions.
- Attributes
boundsThe dimension bounds, in the original space.
is_categoricalSpace contains exclusively categorical dimensions
is_partly_categoricalSpace contains any categorical dimensions
is_realReturns true if all dimensions are Real
n_dimsThe dimensionality of the original space.
transformed_boundsThe dimension bounds, in the warped space.
transformed_n_dimsThe dimensionality of the warped space.
Methods
distance(self, point_a, point_b)Compute distance between two points in this space.
from_yaml(yml_path[, namespace])Create Space from yaml configuration file
inverse_transform(self, Xt)Inverse transform samples from the warped space back to the
rvs(self[, n_samples, random_state])Draw random samples.
transform(self, X)Transform samples from the original space into a warped space.
-
__init__(self, dimensions)[source][source]¶ Initialize self. See help(type(self)) for accurate signature.
-
property
bounds¶ The dimension bounds, in the original space.
-
distance(self, point_a, point_b)[source][source]¶ Compute distance between two points in this space.
- Parameters
- point_aarray
First point.
- point_barray
Second point.
-
classmethod
from_yaml(yml_path, namespace=None)[source][source]¶ Create Space from yaml configuration file
- Parameters
- yml_pathstr
Full path to yaml configuration file, example YaML below: Space:
- Integer:
low: -5 high: 5
- Categorical:
categories: - a - b
- Real:
low: 1.0 high: 5.0 prior: log-uniform
- namespacestr, default=None
- Namespace within configuration file to use, will use first
namespace if not provided
- Returns
- spaceSpace
Instantiated Space object
-
inverse_transform(self, Xt)[source][source]¶ - Inverse transform samples from the warped space back to the
original space.
- Parameters
- Xtarray of floats, shape=(n_samples, transformed_n_dims)
The samples to inverse transform.
- Returns
- Xlist of lists, shape=(n_samples, n_dims)
The original samples.
-
property
is_categorical¶ Space contains exclusively categorical dimensions
-
property
is_partly_categorical¶ Space contains any categorical dimensions
-
property
is_real¶ Returns true if all dimensions are Real
-
property
n_dims¶ The dimensionality of the original space.
-
rvs(self, n_samples=1, random_state=None)[source][source]¶ Draw random samples.
The samples are in the original space. They need to be transformed before being passed to a model or minimizer by
space.transform().- Parameters
- n_samplesint, default=1
Number of samples to be drawn from the space.
- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.
- Returns
- pointslist of lists, shape=(n_points, n_dims)
Points sampled from the space.
-
transform(self, X)[source][source]¶ Transform samples from the original space into a warped space.
- Note: this transformation is expected to be used to project samples
into a suitable space for numerical optimization.
- Parameters
- Xlist of lists, shape=(n_samples, n_dims)
The samples to transform.
- Returns
- Xtarray of floats, shape=(n_samples, transformed_n_dims)
The transformed samples.
-
property
transformed_bounds¶ The dimension bounds, in the warped space.
-
property
transformed_n_dims¶ The dimensionality of the warped space.