"""Gaussian processes regression. """
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
# License: BSD 3 clause
import warnings
from operator import itemgetter
import numpy as np
from scipy.linalg import cholesky, cho_solve, solve_triangular
import scipy.optimize
from ..base import BaseEstimator, RegressorMixin, clone
from ..base import MultiOutputMixin
from .kernels import RBF, ConstantKernel as C
from ..utils import check_random_state
from ..utils.validation import check_X_y, check_array
from ..utils.optimize import _check_optimize_result
class GaussianProcessRegressor(MultiOutputMixin,
RegressorMixin, BaseEstimator):
"""Gaussian process regression (GPR).
The implementation is based on Algorithm 2.1 of Gaussian Processes
for Machine Learning (GPML) by Rasmussen and Williams.
In addition to standard scikit-learn estimator API,
GaussianProcessRegressor:
* allows prediction without prior fitting (based on the GP prior)
* provides an additional method sample_y(X), which evaluates samples
drawn from the GPR (prior or posterior) at given inputs
* exposes a method log_marginal_likelihood(theta), which can be used
externally for other ways of selecting hyperparameters, e.g., via
Markov chain Monte Carlo.
Read more in the :ref:`User Guide <gaussian_process>`.
.. versionadded:: 0.18
Parameters
----------
kernel : kernel object
The kernel specifying the covariance function of the GP. If None is
passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
the kernel's hyperparameters are optimized during fitting.
alpha : float or array-like, optional (default: 1e-10)
Value added to the diagonal of the kernel matrix during fitting.
Larger values correspond to increased noise level in the observations.
This can also prevent a potential numerical issue during fitting, by
ensuring that the calculated values form a positive definite matrix.
If an array is passed, it must have the same number of entries as the
data used for fitting and is used as datapoint-dependent noise level.
Note that this is equivalent to adding a WhiteKernel with c=alpha.
Allowing to specify the noise level directly as a parameter is mainly
for convenience and for consistency with Ridge.
optimizer : string or callable, optional (default: "fmin_l_bfgs_b")
Can either be one of the internally supported optimizers for optimizing
the kernel's parameters, specified by a string, or an externally
defined optimizer passed as a callable. If a callable is passed, it
must have the signature::
def optimizer(obj_func, initial_theta, bounds):
# * 'obj_func' is the objective function to be minimized, which
# takes the hyperparameters theta as parameter and an
# optional flag eval_gradient, which determines if the
# gradient is returned additionally to the function value
# * 'initial_theta': the initial value for theta, which can be
# used by local optimizers
# * 'bounds': the bounds on the values of theta
....
# Returned are the best found hyperparameters theta and
# the corresponding value of the target function.
return theta_opt, func_min
Per default, the 'L-BGFS-B' algorithm from scipy.optimize.minimize
is used. If None is passed, the kernel's parameters are kept fixed.
Available internal optimizers are::
'fmin_l_bfgs_b'
n_restarts_optimizer : int, optional (default: 0)
The number of restarts of the optimizer for finding the kernel's
parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel's initial parameters,
the remaining ones (if any) from thetas sampled log-uniform randomly
from the space of allowed theta-values. If greater than 0, all bounds
must be finite. Note that n_restarts_optimizer == 0 implies that one
run is performed.
normalize_y : boolean, optional (default: False)
Whether the target values y are normalized, i.e., the mean of the
observed target values become zero. This parameter should be set to
True if the target values' mean is expected to differ considerable from
zero. When enabled, the normalization effectively modifies the GP's
prior based on the data, which contradicts the likelihood principle;
normalization is thus disabled per default.
copy_X_train : bool, optional (default: True)
If True, a persistent copy of the training data is stored in the
object. Otherwise, just a reference to the training data is stored,
which might cause predictions to change if the data is modified
externally.
random_state : int, RandomState instance or None, optional (default: None)
The generator used to initialize the centers. If int, random_state is
the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number
generator is the RandomState instance used by `np.random`.
Attributes
----------
X_train_ : sequence of length n_samples
Feature vectors or other representations of training data (also
required for prediction). Could either be array-like with shape =
(n_samples, n_features) or a list of objects.
y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values in training data (also required for prediction)
kernel_ : kernel object
The kernel used for prediction. The structure of the kernel is the
same as the one passed as parameter but with optimized hyperparameters
L_ : array-like of shape (n_samples, n_samples)
Lower-triangular Cholesky decomposition of the kernel in ``X_train_``
alpha_ : array-like of shape (n_samples,)
Dual coefficients of training data points in kernel space
log_marginal_likelihood_value_ : float
The log-marginal-likelihood of ``self.kernel_.theta``
Examples
--------
>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = DotProduct() + WhiteKernel()
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3680...
>>> gpr.predict(X[:2,:], return_std=True)
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))
"""
def __init__(self, kernel=None, alpha=1e-10,
optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0,
normalize_y=False, copy_X_train=True, random_state=None):
self.kernel = kernel
self.alpha = alpha
self.optimizer = optimizer
self.n_restarts_optimizer = n_restarts_optimizer
self.normalize_y = normalize_y
self.copy_X_train = copy_X_train
self.random_state = random_state
def fit(self, X, y):
"""Fit Gaussian process regression model.
Parameters
----------
X : sequence of length n_samples
Feature vectors or other representations of training data.
Could either be array-like with shape = (n_samples, n_features)
or a list of objects.
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values
Returns
-------
self : returns an instance of self.
"""
if self.kernel is None: # Use an RBF kernel as default
self.kernel_ = C(1.0, constant_value_bounds="fixed") \
* RBF(1.0, length_scale_bounds="fixed")
else:
self.kernel_ = clone(self.kernel)
self._rng = check_random_state(self.random_state)
if self.kernel_.requires_vector_input:
X, y = check_X_y(X, y, multi_output=True, y_numeric=True,
ensure_2d=True, dtype="numeric")
else:
X, y = check_X_y(X, y, multi_output=True, y_numeric=True,
ensure_2d=False, dtype=None)
# Normalize target value
if self.normalize_y:
self._y_train_mean = np.mean(y, axis=0)
# demean y
y = y - self._y_train_mean
else:
self._y_train_mean = np.zeros(1)
if np.iterable(self.alpha) \
and self.alpha.shape[0] != y.shape[0]:
if self.alpha.shape[0] == 1:
self.alpha = self.alpha[0]
else:
raise ValueError("alpha must be a scalar or an array"
" with same number of entries as y.(%d != %d)"
% (self.alpha.shape[0], y.shape[0]))
self.X_train_ = np.copy(X) if self.copy_X_train else X
self.y_train_ = np.copy(y) if self.copy_X_train else y
if self.optimizer is not None and self.kernel_.n_dims > 0:
# Choose hyperparameters based on maximizing the log-marginal
# likelihood (potentially starting from several initial values)
def obj_func(theta, eval_gradient=True):
if eval_gradient:
lml, grad = self.log_marginal_likelihood(
theta, eval_gradient=True, clone_kernel=False)
return -lml, -grad
else:
return -self.log_marginal_likelihood(theta,
clone_kernel=False)
# First optimize starting from theta specified in kernel
optima = [(self._constrained_optimization(obj_func,
self.kernel_.theta,
self.kernel_.bounds))]
# Additional runs are performed from log-uniform chosen initial
# theta
if self.n_restarts_optimizer > 0:
if not np.isfinite(self.kernel_.bounds).all():
raise ValueError(
"Multiple optimizer restarts (n_restarts_optimizer>0) "
"requires that all bounds are finite.")
bounds = self.kernel_.bounds
for iteration in range(self.n_restarts_optimizer):
theta_initial = \
self._rng.uniform(bounds[:, 0], bounds[:, 1])
optima.append(
self._constrained_optimization(obj_func, theta_initial,
bounds))
# Select result from run with minimal (negative) log-marginal
# likelihood
lml_values = list(map(itemgetter(1), optima))
self.kernel_.theta = optima[np.argmin(lml_values)][0]
self.log_marginal_likelihood_value_ = -np.min(lml_values)
else:
self.log_marginal_likelihood_value_ = \
self.log_marginal_likelihood(self.kernel_.theta,
clone_kernel=False)
# Precompute quantities required for predictions which are independent
# of actual query points
K = self.kernel_(self.X_train_)
K[np.diag_indices_from(K)] += self.alpha
try:
self.L_ = cholesky(K, lower=True) # Line 2
# self.L_ changed, self._K_inv needs to be recomputed
self._K_inv = None
except np.linalg.LinAlgError as exc:
exc.args = ("The kernel, %s, is not returning a "
"positive definite matrix. Try gradually "
"increasing the 'alpha' parameter of your "
"GaussianProcessRegressor estimator."
% self.kernel_,) + exc.args
raise
self.alpha_ = cho_solve((self.L_, True), self.y_train_) # Line 3
return self
def predict(self, X, return_std=False, return_cov=False):
"""Predict using the Gaussian process regression model
We can also predict based on an unfitted model by using the GP prior.
In addition to the mean of the predictive distribution, also its
standard deviation (return_std=True) or covariance (return_cov=True).
Note that at most one of the two can be requested.
Parameters
----------
X : sequence of length n_samples
Query points where the GP is evaluated.
Could either be array-like with shape = (n_samples, n_features)
or a list of objects.
return_std : bool, default: False
If True, the standard-deviation of the predictive distribution at
the query points is returned along with the mean.
return_cov : bool, default: False
If True, the covariance of the joint predictive distribution at
the query points is returned along with the mean
Returns
-------
y_mean : array, shape = (n_samples, [n_output_dims])
Mean of predictive distribution a query points
y_std : array, shape = (n_samples,), optional
Standard deviation of predictive distribution at query points.
Only returned when return_std is True.
y_cov : array, shape = (n_samples, n_samples), optional
Covariance of joint predictive distribution a query points.
Only returned when return_cov is True.
"""
if return_std and return_cov:
raise RuntimeError(
"Not returning standard deviation of predictions when "
"returning full covariance.")
if self.kernel is None or self.kernel.requires_vector_input:
X = check_array(X, ensure_2d=True, dtype="numeric")
else:
X = check_array(X, ensure_2d=False, dtype=None)
if not hasattr(self, "X_train_"): # Unfitted;predict based on GP prior
if self.kernel is None:
kernel = (C(1.0, constant_value_bounds="fixed") *
RBF(1.0, length_scale_bounds="fixed"))
else:
kernel = self.kernel
y_mean = np.zeros(X.shape[0])
if return_cov:
y_cov = kernel(X)
return y_mean, y_cov
elif return_std:
y_var = kernel.diag(X)
return y_mean, np.sqrt(y_var)
else:
return y_mean
else: # Predict based on GP posterior
K_trans = self.kernel_(X, self.X_train_)
y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star)
y_mean = self._y_train_mean + y_mean # undo normal.
if return_cov:
v = cho_solve((self.L_, True), K_trans.T) # Line 5
y_cov = self.kernel_(X) - K_trans.dot(v) # Line 6
return y_mean, y_cov
elif return_std:
# cache result of K_inv computation
if self._K_inv is None:
# compute inverse K_inv of K based on its Cholesky
# decomposition L and its inverse L_inv
L_inv = solve_triangular(self.L_.T,
np.eye(self.L_.shape[0]))
self._K_inv = L_inv.dot(L_inv.T)
# Compute variance of predictive distribution
y_var = self.kernel_.diag(X)
y_var -= np.einsum("ij,ij->i",
np.dot(K_trans, self._K_inv), K_trans)
# Check if any of the variances is negative because of
# numerical issues. If yes: set the variance to 0.
y_var_negative = y_var < 0
if np.any(y_var_negative):
warnings.warn("Predicted variances smaller than 0. "
"Setting those variances to 0.")
y_var[y_var_negative] = 0.0
return y_mean, np.sqrt(y_var)
else:
return y_mean
[docs] def sample_y(self, X, n_samples=1, random_state=0):
"""Draw samples from Gaussian process and evaluate at X.
Parameters
----------
X : sequence of length n_samples
Query points where the GP is evaluated.
Could either be array-like with shape = (n_samples, n_features)
or a list of objects.
n_samples : int, default: 1
The number of samples drawn from the Gaussian process
random_state : int, RandomState instance or None, optional (default=0)
If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the
random number generator; If None, the random number
generator is the RandomState instance used by `np.random`.
Returns
-------
y_samples : array, shape = (n_samples_X, [n_output_dims], n_samples)
Values of n_samples samples drawn from Gaussian process and
evaluated at query points.
"""
rng = check_random_state(random_state)
y_mean, y_cov = self.predict(X, return_cov=True)
if y_mean.ndim == 1:
y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
else:
y_samples = \
[rng.multivariate_normal(y_mean[:, i], y_cov,
n_samples).T[:, np.newaxis]
for i in range(y_mean.shape[1])]
y_samples = np.hstack(y_samples)
return y_samples
[docs] def log_marginal_likelihood(self, theta=None, eval_gradient=False,
clone_kernel=True):
"""Returns log-marginal likelihood of theta for training data.
Parameters
----------
theta : array-like of shape (n_kernel_params,) or None
Kernel hyperparameters for which the log-marginal likelihood is
evaluated. If None, the precomputed log_marginal_likelihood
of ``self.kernel_.theta`` is returned.
eval_gradient : bool, default: False
If True, the gradient of the log-marginal likelihood with respect
to the kernel hyperparameters at position theta is returned
additionally. If True, theta must not be None.
clone_kernel : bool, default=True
If True, the kernel attribute is copied. If False, the kernel
attribute is modified, but may result in a performance improvement.
Returns
-------
log_likelihood : float
Log-marginal likelihood of theta for training data.
log_likelihood_gradient : array, shape = (n_kernel_params,), optional
Gradient of the log-marginal likelihood with respect to the kernel
hyperparameters at position theta.
Only returned when eval_gradient is True.
"""
if theta is None:
if eval_gradient:
raise ValueError(
"Gradient can only be evaluated for theta!=None")
return self.log_marginal_likelihood_value_
if clone_kernel:
kernel = self.kernel_.clone_with_theta(theta)
else:
kernel = self.kernel_
kernel.theta = theta
if eval_gradient:
K, K_gradient = kernel(self.X_train_, eval_gradient=True)
else:
K = kernel(self.X_train_)
K[np.diag_indices_from(K)] += self.alpha
try:
L = cholesky(K, lower=True) # Line 2
except np.linalg.LinAlgError:
return (-np.inf, np.zeros_like(theta)) \
if eval_gradient else -np.inf
# Support multi-dimensional output of self.y_train_
y_train = self.y_train_
if y_train.ndim == 1:
y_train = y_train[:, np.newaxis]
alpha = cho_solve((L, True), y_train) # Line 3
# Compute log-likelihood (compare line 7)
log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
log_likelihood_dims -= np.log(np.diag(L)).sum()
log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
log_likelihood = log_likelihood_dims.sum(-1) # sum over dimensions
if eval_gradient: # compare Equation 5.9 from GPML
tmp = np.einsum("ik,jk->ijk", alpha, alpha) # k: output-dimension
tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis]
# Compute "0.5 * trace(tmp.dot(K_gradient))" without
# constructing the full matrix tmp.dot(K_gradient) since only
# its diagonal is required
log_likelihood_gradient_dims = \
0.5 * np.einsum("ijl,ijk->kl", tmp, K_gradient)
log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1)
if eval_gradient:
return log_likelihood, log_likelihood_gradient
else:
return log_likelihood
def _constrained_optimization(self, obj_func, initial_theta, bounds):
if self.optimizer == "fmin_l_bfgs_b":
opt_res = scipy.optimize.minimize(
obj_func, initial_theta, method="L-BFGS-B", jac=True,
bounds=bounds)
_check_optimize_result("lbfgs", opt_res)
theta_opt, func_min = opt_res.x, opt_res.fun
elif callable(self.optimizer):
theta_opt, func_min = \
self.optimizer(obj_func, initial_theta, bounds=bounds)
else:
raise ValueError("Unknown optimizer %s." % self.optimizer)
return theta_opt, func_min
def _more_tags(self):
return {'requires_fit': False}