skopt.space.space
.Integer¶
- class skopt.space.space.Integer(low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'numpy.int64'>)[source][source]¶
Search space dimension that can take on integer values.
- Parameters
- lowint
Lower bound (inclusive).
- highint
Upper bound (inclusive).
- prior“uniform” or “log-uniform”, default=”uniform”
Distribution to use when sampling random integers for this dimension.
If
"uniform"
, integers are sampled uniformly between the lower and upper bounds.If
"log-uniform"
, integers are sampled uniformly betweenlog(lower, base)
andlog(upper, base)
where log has basebase
.
- baseint
The logarithmic base to use for a log-uniform prior.
Default 10, otherwise commonly 2.
- transform“identity”, “normalize”, optional
The following transformations are supported.
“identity”, (default) the transformed space is the same as the original space.
“normalize”, the transformed space is scaled to be between 0 and 1.
- namestr or None
Name associated with dimension, e.g., “number of trees”.
- dtypestr or dtype, default=np.int64
integer type which will be used in inverse_transform, can be int, np.int16, np.uint32, np.int32, np.int64 (default). When set to int,
inverse_transform
returns a list instead of a numpy array
- Attributes
- bounds
- is_constant
- name
- prior
- size
- transformed_bounds
- transformed_size
Methods
distance
(a, b)Compute distance between point
a
andb
.Inverse transform samples from the warped space back into the original space.
rvs
([n_samples, random_state])Draw random samples.
set_transformer
([transform])Define _rvs and transformer spaces.
transform
(X)Transform samples form the original space to a warped space.
- __init__(low, high, prior='uniform', base=10, transform=None, name=None, dtype=<class 'numpy.int64'>)[source][source]¶
- distance(a, b)[source][source]¶
Compute distance between point
a
andb
.- Parameters
- aint
First point.
- bint
Second point.
- inverse_transform(Xt)[source][source]¶
Inverse transform samples from the warped space back into the original space.
- rvs(n_samples=1, random_state=None)[source]¶
Draw random samples.
- Parameters
- n_samplesint or None
The number of samples to be drawn.
- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.