skopt.plots
.partial_dependence_1D¶
- skopt.plots.partial_dependence_1D(space, model, i, samples, n_points=40)[source][source]¶
Calculate the partial dependence for a single dimension.
This uses the given model to calculate the average objective value for all the samples, where the given dimension is fixed at regular intervals between its bounds.
This shows how the given dimension affects the objective value when the influence of all other dimensions are averaged out.
- Parameters
- space
Space
The parameter space over which the minimization was performed.
- model
Surrogate model for the objective function.
- iint
The dimension for which to calculate the partial dependence.
- samplesnp.array, shape=(n_points, n_dims)
Randomly sampled and transformed points to use when averaging the model function at each of the
n_points
when using partial dependence.- n_pointsint, default=40
Number of points at which to evaluate the partial dependence along each dimension
i
.
- space
- Returns
- xinp.array
The points at which the partial dependence was evaluated.
- yinp.array
The average value of the modelled objective function at each point
xi
.