skopt.learning
.GradientBoostingQuantileRegressor¶
- class skopt.learning.GradientBoostingQuantileRegressor(quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None)[source][source]¶
Predict several quantiles with one estimator.
This is a wrapper around
GradientBoostingRegressor
’s quantile regression that allows you to predict severalquantiles
in one go.- Parameters
- quantilesarray-like
Quantiles to predict. By default the 16, 50 and 84% quantiles are predicted.
- base_estimatorGradientBoostingRegressor instance or None (default)
Quantile regressor used to make predictions. Only instances of
GradientBoostingRegressor
are supported. Use this to change the hyper-parameters of the estimator.- n_jobsint, default=1
The number of jobs to run in parallel for
fit
. If -1, then the number of jobs is set to the number of cores.- random_stateint, RandomState instance, or None (default)
Set random state to something other than None for reproducible results.
Methods
fit
(X, y)Fit one regressor for each quantile.
get_params
([deep])Get parameters for this estimator.
predict
(X[, return_std, return_quantiles])Predict.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_params
(**params)Set the parameters of this estimator.
- __init__(quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None)[source][source]¶
- fit(X, y)[source][source]¶
Fit one regressor for each quantile.
- Parameters
- Xarray-like, shape=(n_samples, n_features)
Training vectors, where
n_samples
is the number of samples andn_features
is the number of features.- yarray-like, shape=(n_samples,)
Target values (real numbers in regression)
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
- predict(X, return_std=False, return_quantiles=False)[source][source]¶
Predict.
Predict
X
at every quantile ifreturn_std
is set to False. Ifreturn_std
is set to True, then return the mean and the predicted standard deviation, which is approximated as the (0.84th quantile - 0.16th quantile) divided by 2.0- Parameters
- Xarray-like, shape=(n_samples, n_features)
where
n_samples
is the number of samples andn_features
is the number of features.
- score(X, y, sample_weight=None)[source]¶
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for
X
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns
- scorefloat
\(R^2\) of
self.predict(X)
wrt.y
.
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.