Comparing initial sampling methods

Holger Nahrstaedt 2020 Sigurd Carlsen October 2019

When doing baysian optimization we often want to reserve some of the early part of the optimization to pure exploration. By default the optimizer suggests purely random samples for the first n_initial_points (10 by default). The downside to this is that there is no guarantee that these samples are spread out evenly across all the dimensions.

Sampling methods as Latin hypercube, Sobol’, Halton and Hammersly take advantage of the fact that we know beforehand how many random points we want to sample. Then these points can be “spread out” in such a way that each dimension is explored.

See also the example on an integer space sphx_glr_auto_examples_initial_sampling_method_integer.py

print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
from skopt.space import Space
from skopt.sampler import Sobol
from skopt.sampler import Lhs
from skopt.sampler import Halton
from skopt.sampler import Hammersly
from skopt.sampler import Grid
from scipy.spatial.distance import pdist
def plot_searchspace(x, title):
    fig, ax = plt.subplots()
    plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
    plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', markersize=80, alpha=0.5)
    # ax.legend(loc="best", numpoints=1)
    ax.set_xlabel("X1")
    ax.set_xlim([-5, 10])
    ax.set_ylabel("X2")
    ax.set_ylim([0, 15])
    plt.title(title)

n_samples = 10

space = Space([(-5., 10.), (0., 15.)])
# space.set_transformer("normalize")

Random sampling

x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
pdist_data.append(pdist(x).flatten())
x_label.append("random")
Random samples

Sobol’

sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, "Sobol'")
pdist_data.append(pdist(x).flatten())
x_label.append("sobol'")
Sobol'

Out:

/home/circleci/project/skopt/sampler/sobol.py:246: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+10=10.
  warnings.warn("The balance properties of Sobol' points require "

Classic Latin hypercube sampling

lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
classic LHS

Centered Latin hypercube sampling

lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("center")
centered LHS

Maximin optimized hypercube sampling

lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
maximin LHS

Correlation optimized hypercube sampling

lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
correlation LHS

Ratio optimized hypercube sampling

lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
ratio LHS

Halton sampling

halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
Halton

Hammersly sampling

hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
Hammersly

Grid sampling

grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
Grid

Pdist boxplot of all methods

This boxplot shows the distance between all generated points using Euclidian distance. The higher the value, the better the sampling method. It can be seen that random has the worst performance

fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 12)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)
initial sampling method

Total running time of the script: ( 0 minutes 7.448 seconds)

Estimated memory usage: 9 MB

Gallery generated by Sphinx-Gallery