skopt.sampler.Hammersly¶
- class skopt.sampler.Hammersly(min_skip=0, max_skip=0, primes=None)[source][source]¶
- Creates - Hammersleysequence samples.- The Hammersley set is equivalent to the Halton sequence, except for one dimension is replaced with a regular grid. It is not recommended to generate a Hammersley sequence with more than 10 dimension. - For - dim == 1the sequence falls back to Van Der Corput sequence.- Parameters
- min_skipint, default=-1
- Minimum skipped seed number. When - min_skip != max_skipand both are > -1, a random number is picked.
- max_skipint, default=-1
- Maximum skipped seed number. When - min_skip != max_skipand both are > -1, a random number is picked.
- primestuple, default=None
- The (non-)prime base to calculate values along each axis. If empty, growing prime values starting from 2 will be used. 
 
 - References - T-T. Wong, W-S. Luk, and P-A. Heng, “Sampling with Hammersley and Halton Points,” Journal of Graphics Tools, vol. 2, no. 2, 1997, pp. 9 - 24. - Methods - generate(dimensions, n_samples[, random_state])- Creates samples from Hammersly set. - set_params(**params)- Set the parameters of this initial point generator. - generate(dimensions, n_samples, random_state=None)[source][source]¶
- Creates samples from Hammersly set. - Parameters
- dimensionslist, shape (n_dims,)
- List of search space dimensions. Each search dimension can be defined either as - a - (lower_bound, upper_bound)tuple (for- Realor- Integerdimensions),
- a - (lower_bound, upper_bound, "prior")tuple (for- Realdimensions),
- as a list of categories (for - Categoricaldimensions), or
- an instance of a - Dimensionobject (- Real,- Integeror- Categorical).
 
- n_samplesint
- The order of the Hammersley sequence. Defines the number of samples. 
- random_stateint, RandomState instance, or None (default)
- Set random state to something other than None for reproducible results. 
 
- Returns
- np.array, shape=(n_dim, n_samples)
- Hammersley set. 
 
 
 
 
           
