
scikit-optimize Documentation
Release 0.7.4

The scikit-optimize Contributors.

Feb 23, 2020

CONTENTS

1 Welcome to scikit-optimize 1
1.1 Installation . 1
1.2 Release History . 1

2 Getting started 7
2.1 Finding a minimum . 7

3 User Guide 9
3.1 Acquisition . 9
3.2 BayesSearchCV, a GridSearchCV compatible estimator . 9
3.3 Callbacks . 9
3.4 Optimizer, an ask-and-tell interface . 10
3.5 skopt’s top level minimization functions . 10
3.6 Plotting tools . 10
3.7 Space define the optimization space . 10
3.8 Utility functions . 10

4 Examples 13
4.1 Miscellaneous examples . 13
4.2 Plotting functions . 70

5 API Reference 95
5.1 skopt: module . 95
5.2 skopt.acquisition: Acquisition . 118
5.3 skopt.benchmarks: A collection of benchmark problems. 120
5.4 skopt.callbacks: Callbacks . 122
5.5 skopt.learning: Machine learning extensions for model-based optimization. 126
5.6 skopt.optimizer: Optimizer . 142
5.7 skopt.plots: Plotting functions. 157
5.8 skopt.utils: Utils functions. 161
5.9 skopt.space.space: Space . 167
5.10 skopt.space.transformers: transformers . 175

Bibliography 179

Index 181

i

ii

CHAPTER

ONE

WELCOME TO SCIKIT-OPTIMIZE

1.1 Installation

scikit-optimize supports Python 3.5 or newer.

The newest release can be installed via pip:

$ pip install scikit-optimize

or via conda:

$ conda install -c conda-forge scikit-optimize

The newest development version of scikit-optimize can be installed by:

$ pip install git+https://github.com/scikit-optimize/scikit-optimize.git

1.1.1 Development version

The library is still experimental and under heavy development. The development version can be installed through:

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize
pip install -r requirements.txt
python setup.py develop

Run the tests by executing pytest in the top level directory.

1.2 Release History

Release notes for all scikit-optimize releases are linked in this this page.

Versions 0.7.3 and 0.7.4 fixes the missing LICENSE in the package source

1.2.1 Version 0.7.2

February 2020

1

scikit-optimize Documentation, Release 0.7.4

skopt.optimizer

• [FEATURE] update_next() and get_results() added to Optimize and add more examples #837 by Holger
Nahrstaedt and Sigurd Carlsen

• [FIX] Fix random forest regressor (Add missing min_impurity_decrease) #829 by Holger Nahrstaedt

skopt.utils

• [ENHANCEMENT] Add expected_minimum_random_sampling #830 by Holger Nahrstaedt

• [FIX] Return ordereddict in point_asdict and add some more unit tests. #840 by Holger Nahrstaedt

• [ENHANCEMENT] Added check_list_types and check_dimension_names #803 by Hvass-Labs and
Holger Nahrstaedt

skopt.plots

• [ENHANCEMENT] Add more parameter to plot_objective and more plot examples #830 by Holger Nahrstaedt and
Sigurd Carlsen

skopt.searchcv

• [FIX] Fix searchcv rank (issue #831) #832 by Holger Nahrstaedt

skopt.space

• [FIX] Fix integer normalize by using round() #830 by Holger Nahrstaedt

Miscellaneous

• [FIX] Fix doc examples

• [FIX] Fix license detection in github #827 by Holger Nahrstaedt

• [ENHANCEMENT] Add doctest to CI

1.2.2 Version 0.7.1

February 2020

skopt.space

• [FIX] Fix categorical space (issue #821) #823 by Holger Nahrstaedt

• [ENHANCEMENT] int can be set as dtype to fix issue #790 #807 by Holger Nahrstaedt

• [FEATURE] New StringEncoder, can be used in Categoricals

• Remove string conversion in Identity

• [ENHANCEMENT] dtype can be set in Integer and Real

2 Chapter 1. Welcome to scikit-optimize

https://github.com/scikit-optimize/scikit-optimize/pull/837
https://github.com/holgern
https://github.com/holgern
https://github.com/sigurdcarlsen
https://github.com/scikit-optimize/scikit-optimize/pull/829
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/830
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/840
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/803
https://github.com/Hvass-Labs
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/830
https://github.com/holgern
https://github.com/sigurdcarlsen
https://github.com/scikit-optimize/scikit-optimize/pull/832
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/830
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/827
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/823
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/807
https://github.com/holgern

scikit-optimize Documentation, Release 0.7.4

Miscellaneous

• Sphinx documentation #809 by Holger Nahrstaedt

• notebooks are replaced by sphinx-gallery #811 by Holger Nahrstaedt

• Improve sphinx doc #819 by Holger Nahrstaedt

• Old pdoc scripts are removed and replaced by sphinx #822 by Holger Nahrstaedt

1.2.3 Version 0.7

January 2020

skopt.optimizer

• [ENHANCEMENT] Models queue has now a customizable size (model_queue_size). #803 by Kajetan Tukendorf
and Holger Nahrstaedt

• [ENHANCEMENT] Add log-uniform prior to Integer space #805 by Alex Liebscher

skopt.plots

• [ENHANCEMENT] Support for plotting categorical dimensions #806 by jkleint

skopt.searchcv

• [FIX] Allow BayesSearchCV to work with sklearn 0.21. #777 by Kit Choi

Miscellaneous

• [FIX] Reduce the amount of deprecation warnings in unit tests #808 by Holger Nahrstaedt

• [FIX] Reduce the amount of deprecation warnings in unit tests #802 by Alex Liebscher

• joblib instead of sklearn.externals.joblib #776 by Vince Jankovics

• Improve travis CI unit tests (Different sklearn version are checked) #804 by Holger Nahrstaedt

• Removed versioneer support, to keep things simple and to fix pypi deploy #816 by Holger Nahrstaedt

1.2.4 Version 0.6

Highly composite six.

New features

• plot_regret function for plotting the cumulative regret; The purpose of such plot is to access how much an
optimizer is effective at picking good points.

• CheckpointSaver that can be used to save a checkpoint after each iteration with skopt.dump

• Space.from_yaml() to allow for external file to define Space parameters

1.2. Release History 3

https://github.com/scikit-optimize/scikit-optimize/pull/809
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/811
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/819
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/822
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/803
https://github.com/Bacoknight
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/805
https://github.com/liebscher
https://github.com/scikit-optimize/scikit-optimize/pull/806
https://github.com/jkleint
https://github.com/scikit-optimize/scikit-optimize/pull/777
https://github.com/kitchoi
https://github.com/scikit-optimize/scikit-optimize/pull/808
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/802
https://github.com/liebscher
https://github.com/scikit-optimize/scikit-optimize/pull/776
https://github.com/vakker
https://github.com/scikit-optimize/scikit-optimize/pull/804
https://github.com/holgern
https://github.com/scikit-optimize/scikit-optimize/pull/816
https://github.com/holgern

scikit-optimize Documentation, Release 0.7.4

Bug fixes

• Fixed numpy broadcasting issues in gaussian_ei, gaussian_pi

• Fixed build with newest scikit-learn

• Use native python types inside BayesSearchCV

• Include fit_params in BayesSearchCV refit

Maintenance

• Added versioneer support, to reduce changes with new version of the skopt

1.2.5 Version 0.5.2

Bug fixes

• Separated n_points from n_jobs in BayesSearchCV.

• Dimensions now support boolean np.arrays.

Maintenance

• matplotlib is now an optional requirement (install with pip install
'scikit-optimize[plots]')

1.2.6 Version 0.5

High five!

New features

• Single element dimension definition, which can be used to fix the value of a dimension during optimization.

• total_iterations property of BayesSearchCV that counts total iterations needed to explore all sub-
spaces.

• Add iteration event handler for BayesSearchCV, useful for early stopping inside BayesSearchCV search
loop.

• added utils.use_named_args decorator to help with unpacking named dimensions when calling an ob-
jective function.

Bug fixes

• Removed redundant estimator fitting inside BayesSearchCV.

• Fixed the log10 transform for Real dimensions that would lead to values being out of bounds.

1.2.7 Version 0.4

Go forth!

4 Chapter 1. Welcome to scikit-optimize

scikit-optimize Documentation, Release 0.7.4

New features

• Support early stopping of optimization loop.

• Benchmarking scripts to evaluate performance of different surrogate models.

• Support for parallel evaluations of the objective function via several constant liar stategies.

• BayesSearchCV as a drop in replacement for scikit-learn’s GridSearchCV.

• New acquisition functions “EIps” and “PIps” that takes into account function compute time.

Bug fixes

• Fixed inference of dimensions of type Real.

API changes

• Change interface of GradientBoostingQuantileRegressor’s predict method to match return type of other regres-
sors

• Dimensions of type Real are now inclusive of upper bound.

1.2.8 Version 0.3

Third time’s a charm.

New features

• Accuracy improvements of the optimization of the acquisition function by pre-selecting good candidates as
starting points when using acq_optimizer='lbfgs'.

• Support a ask-and-tell interface. Check out the Optimizer class if you need fine grained control over the
iterations.

• Parallelize L-BFGS minimization runs over the acquisition function.

• Implement weighted hamming distance kernel for problems with only categorical dimensions.

• New acquisition function gp_hedge that probabilistically chooses one of EI, PI or LCB at every iteration
depending upon the cumulative gain.

Bug fixes

• Warnings are now raised if a point is chosen as the candidate optimum multiple times.

• Infinite gradients that were raised in the kernel gradient computation are now fixed.

• Integer dimensions are now normalized to [0, 1] internally in gp_minimize.

API Changes

• The default acq_optimizer function has changed from "auto" to "lbfgs" in gp_minimize.

1.2. Release History 5

scikit-optimize Documentation, Release 0.7.4

1.2.9 Version 0.2

New features

• Speed improvements when using gp_minimize with acq_optimizer='lbfgs' and
acq_optimizer='auto' when all the search-space dimensions are Real.

• Persistence of minimization results using skopt.dump and skopt.load.

• Support for using arbitrary estimators that implement a return_std argument in their predict method by
means of base_minimize from skopt.optimizer.

• Support for tuning noise in gp_minimize using the noise argument.

• TimerCallback in skopt.callbacks to log the time between iterations of the minimization loop.

1.2.10 Version 0.1

First light!

New features

• Bayesian optimization via gp_minimize.

• Tree-based sequential model-based optimization via forest_minimize and gbrt_minimize, with sup-
port for multi-threading.

• Support of LCB, EI and PI as acquisition functions.

• Plotting functions for inspecting convergence, evaluations and the objective function.

• API for specifying and sampling from a parameter space.

6 Chapter 1. Welcome to scikit-optimize

CHAPTER

TWO

GETTING STARTED

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box func-
tions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy
to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.
optimize here.

Approximated objective function after 50 iterations of gp_minimize. Plot made using plots.
plot_objective.

2.1 Finding a minimum

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) *

np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
suggested = opt.ask()
y = f(suggested)
opt.tell(suggested, y)
print('iteration:', i, suggested, y)

For more read our Bayesian optimization with skopt and the other examples.

7

http://docs.scipy.org/doc/scipy/reference/optimize.html
auto_examples/index.html

scikit-optimize Documentation, Release 0.7.4

8 Chapter 2. Getting started

CHAPTER

THREE

USER GUIDE

3.1 Acquisition

3.2 BayesSearchCV, a GridSearchCV compatible estimator

Use BayesSearchCV as a replacement for scikit-learn’s GridSearchCV.

3.3 Callbacks

Monitor and influence the optimization procedure via callbacks.

Callbacks are callables which are invoked after each iteration of the optimizer and are passed the results “so far”.
Callbacks can monitor progress, or stop the optimization early by returning True.

3.3.1 Monitoring callbacks

• VerboseCallback

• TimerCallback

3.3.2 Early stopping callbacks

• DeltaXStopper

• DeadlineStopper

• DeltaXStopper

• DeltaYStopper

• EarlyStopper

3.3.3 Other callbacks

• CheckpointSaver

9

scikit-optimize Documentation, Release 0.7.4

3.4 Optimizer, an ask-and-tell interface

Use the Optimizer class directly when you want to control the optimization loop. We refer to this as the ask-and-tell
interface. This class is used internally to implement the skopt’s top level minimization functions.

3.5 skopt’s top level minimization functions

These are easy to get started with. They mirror the scipy.optimize API and provide a high level interface to
various pre-configured optimizers.

• dummy_minimize

• forest_minimize

• gbrt_minimize

• gp_minimize

3.6 Plotting tools

Plotting functions can be used to visualize the optimization process.

3.6.1 plot_convergence

plot_convergence plots one or several convergence traces.

3.6.2 plot_evaluations

plot_evaluations visualize the order in which points where sampled.

3.6.3 plot_objective

plot_objective creates pairwise dependence plot of the objective function.

3.6.4 plot_regret

plot_regret plot one or several cumulative regret traces.

3.7 Space define the optimization space

3.8 Utility functions

This is a list of public utility functions. Other functions in this module are meant for internal use.

10 Chapter 3. User Guide

scikit-optimize Documentation, Release 0.7.4

3.8. Utility functions 11

../auto_examples/hyperparameter-optimization.html
../auto_examples/plots/visualizing-results.htm

scikit-optimize Documentation, Release 0.7.4

12 Chapter 3. User Guide

../auto_examples/plots/partial-dependence-plot.html

CHAPTER

FOUR

EXAMPLES

4.1 Miscellaneous examples

Miscellaneous and introductory examples for scikit-optimize.

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.1 Parallel optimization

Iaroslav Shcherbatyi, May 2017. Reviewed by Manoj Kumar and Tim Head. Reformatted by Holger Nahrstaedt 2020

Introduction

For many practical black box optimization problems expensive objective can be evaluated in parallel at multiple points.
This allows to get more objective evaluations per unit of time, which reduces the time necessary to reach good objective
values when appropriate optimization algorithms are used, see for example results in1 and the references therein.

One such example task is a selection of number and activation function of a neural network which results in highest
accuracy for some machine learning problem. For such task, multiple neural networks with different combinations of
number of neurons and activation function type can be evaluated at the same time in parallel on different cpu cores /
computational nodes.

The “ask and tell” API of scikit-optimize exposes functionality that allows to obtain multiple points for evaluation in
parallel. Intended usage of this interface is as follows:

1. Initialize instance of the Optimizer class from skopt

2. Obtain n points for evaluation in parallel by calling the ask method of an optimizer instance with the
n_points argument set to n > 0

3. Evaluate points

4. Provide points and corresponding objectives using the tell method of an optimizer instance

5. Continue from step 2 until eg maximum number of evaluations reached

print(__doc__)
import numpy as np

1 https://hal.archives-ouvertes.fr/hal-00732512/document

13

https://hal.archives-ouvertes.fr/hal-00732512/document

scikit-optimize Documentation, Release 0.7.4

Example

A minimalistic example that uses joblib to parallelize evaluation of the objective function is given below.

from skopt import Optimizer
from skopt.space import Real
from joblib import Parallel, delayed
example objective taken from skopt
from skopt.benchmarks import branin

optimizer = Optimizer(
dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
random_state=1,
base_estimator='gp'

)

for i in range(10):
x = optimizer.ask(n_points=4) # x is a list of n_points points
y = Parallel(n_jobs=4)(delayed(branin)(v) for v in x) # evaluate points in

→˓parallel
optimizer.tell(x, y)

takes ~ 20 sec to get here
print(min(optimizer.yi)) # print the best objective found

Out:

0.39803969617957335

Note that if n_points is set to some integer > 0 for the ask method, the result will be a list of points, even for
n_points = 1. If the argument is set to None (default value) then a single point (but not a list of points) will be
returned.

The default “minimum constant liar”1 parallelization strategy is used in the example, which allows to obtain multiple
points for evaluation with a single call to the ask method with any surrogate or acquisition function. Parallelization
strategy can be set using the “strategy” argument of ask. For supported parallelization strategies see the documenta-
tion of scikit-optimize.

Total running time of the script: (0 minutes 27.735 seconds)

Estimated memory usage: 29 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.2 Tuning a scikit-learn estimator with skopt

Gilles Louppe, July 2016 Katie Malone, August 2016 Reformatted by Holger Nahrstaedt 2020

If you are looking for a sklearn.model_selection.GridSearchCV replacement checkout Scikit-learn hy-
perparameter search wrapper instead.

Problem statement

Tuning the hyper-parameters of a machine learning model is often carried out using an exhaustive exploration
of (a subset of) the space all hyper-parameter configurations (e.g., using sklearn.model_selection.

14 Chapter 4. Examples

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

scikit-optimize Documentation, Release 0.7.4

GridSearchCV), which often results in a very time consuming operation.

In this notebook, we illustrate how to couple gp_minimize with sklearn’s estimators to tune hyper-parameters using
sequential model-based optimisation, hopefully resulting in equivalent or better solutions, but within less evaluations.

Note: scikit-optimize provides a dedicated interface for estimator tuning via BayesSearchCV class which has a
similar interface to those of sklearn.model_selection.GridSearchCV. This class uses functions of skopt
to perform hyperparameter search efficiently. For example usage of this class, see Scikit-learn hyperparameter search
wrapper example notebook.

print(__doc__)
import numpy as np

Objective

To tune the hyper-parameters of our model we need to define a model, decide which parameters to optimize, and define
the objective function we want to minimize.

from sklearn.datasets import load_boston
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score

boston = load_boston()
X, y = boston.data, boston.target
n_features = X.shape[1]

gradient boosted trees tend to do well on problems like this
reg = GradientBoostingRegressor(n_estimators=50, random_state=0)

Next, we need to define the bounds of the dimensions of the search space we want to explore and pick the objective.
In this case the cross-validation mean absolute error of a gradient boosting regressor over the Boston dataset, as a
function of its hyper-parameters.

from skopt.space import Real, Integer
from skopt.utils import use_named_args

The list of hyper-parameters we want to optimize. For each one we define the
bounds, the corresponding scikit-learn parameter name, as well as how to
sample values from that dimension (`'log-uniform'` for the learning rate)
space = [Integer(1, 5, name='max_depth'),

Real(10**-5, 10**0, "log-uniform", name='learning_rate'),
Integer(1, n_features, name='max_features'),
Integer(2, 100, name='min_samples_split'),
Integer(1, 100, name='min_samples_leaf')]

this decorator allows your objective function to receive a the parameters as
keyword arguments. This is particularly convenient when you want to set
scikit-learn estimator parameters
@use_named_args(space)
def objective(**params):

reg.set_params(**params)

return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,
scoring="neg_mean_absolute_error"))

4.1. Miscellaneous examples 15

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

scikit-optimize Documentation, Release 0.7.4

Optimize all the things!

With these two pieces, we are now ready for sequential model-based optimisation. Here we use gaussian process-based
optimisation.

from skopt import gp_minimize
res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)

"Best score=%.4f" % res_gp.fun

Out:

'Best score=2.8451'

print("""Best parameters:
- max_depth=%d
- learning_rate=%.6f
- max_features=%d
- min_samples_split=%d
- min_samples_leaf=%d""" % (res_gp.x[0], res_gp.x[1],

res_gp.x[2], res_gp.x[3],
res_gp.x[4]))

Out:

Best parameters:
- max_depth=5
- learning_rate=0.119428
- max_features=9
- min_samples_split=2
- min_samples_leaf=1

Convergence plot

from skopt.plots import plot_convergence

plot_convergence(res_gp)

16 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Out:

<matplotlib.axes._subplots.AxesSubplot object at 0x7f8320cacdc0>

Total running time of the script: (0 minutes 30.711 seconds)

Estimated memory usage: 33 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.3 Store and load skopt optimization results

Mikhail Pak, October 2016. Reformatted by Holger Nahrstaedt 2020

Problem statement

We often want to store optimization results in a file. This can be useful, for example,

• if you want to share your results with colleagues;

• if you want to archive and/or document your work;

• or if you want to postprocess your results in a different Python instance or on an another computer.

4.1. Miscellaneous examples 17

scikit-optimize Documentation, Release 0.7.4

The process of converting an object into a byte stream that can be stored in a file is called _serialization_. Conversely,
deserialization means loading an object from a byte stream.

Warning: Deserialization is not secure against malicious or erroneous code. Never load serialized data from untrusted
or unauthenticated sources!

print(__doc__)
import numpy as np
import os
import sys

The followings are hacks to allow sphinx-gallery to run the example.
sys.path.insert(0, os.getcwd())
main_dir = os.path.basename(sys.modules['__main__'].__file__)
IS_RUN_WITH_SPHINX_GALLERY = main_dir != os.getcwd()

Simple example

We will use the same optimization problem as in the Bayesian optimization with skopt notebook:

from skopt import gp_minimize
noise_level = 0.1

if IS_RUN_WITH_SPHINX_GALLERY:
When this example is run with sphinx gallery, it breaks the pickling
capacity for multiprocessing backend so we have to modify the way we
define our functions. This has nothing to do with the example.
from utils import obj_fun

else:
def obj_fun(x, noise_level=noise_level):

return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() *
→˓noise_level

res = gp_minimize(obj_fun, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
x0=[0.], # the starting point
acq_func="LCB", # the acquisition function (optional)
n_calls=15, # the number of evaluations of f including at x0
n_random_starts=0, # the number of random initialization points
random_state=777)

Out:

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.

(continues on next page)

18 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

warnings.warn("The objective has been evaluated "
/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

As long as your Python session is active, you can access all the optimization results via the res object.

So how can you store this data in a file? skopt conveniently provides functions skopt.dump and skopt.load
that handle this for you. These functions are essentially thin wrappers around the joblib module’s joblib.dump and
joblib.load.

We will now show how to use skopt.dump and skopt.load for storing and loading results.

Using skopt.dump() and skopt.load()

For storing optimization results into a file, call the skopt.dump function:

from skopt import dump, load

dump(res, 'result.pkl')

And load from file using skopt.load:

res_loaded = load('result.pkl')

res_loaded.fun

Out:

-0.2423455753391654

You can fine-tune the serialization and deserialization process by calling skopt.dump and skopt.load with
additional keyword arguments. See the joblib documentation joblib.dump and joblib.load for the additional
parameters.

For instance, you can specify the compression algorithm and compression level (highest in this case):

dump(res, 'result.gz', compress=9)

from os.path import getsize
print('Without compression: {} bytes'.format(getsize('result.pkl')))
print('Compressed with gz: {} bytes'.format(getsize('result.gz')))

4.1. Miscellaneous examples 19

https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/generated/joblib.dump.html#joblib.dump
https://joblib.readthedocs.io/en/latest/generated/joblib.load.html#joblib.load
https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/generated/joblib.dump.html#joblib.dump
https://joblib.readthedocs.io/en/latest/generated/joblib.load.html#joblib.load

scikit-optimize Documentation, Release 0.7.4

Out:

Without compression: 80120 bytes
Compressed with gz: 19024 bytes

Unserializable objective functions

Notice that if your objective function is non-trivial (e.g. it calls MATLAB engine from Python), it might be
not serializable and skopt.dump will raise an exception when you try to store the optimization results. In
this case you should disable storing the objective function by calling skopt.dump with the keyword argument
store_objective=False:

dump(res, 'result_without_objective.pkl', store_objective=False)

Notice that the entry 'func' is absent in the loaded object but is still present in the local variable:

res_loaded_without_objective = load('result_without_objective.pkl')

print('Loaded object: ', res_loaded_without_objective.specs['args'].keys())
print('Local variable:', res.specs['args'].keys())

Out:

Loaded object: dict_keys(['dimensions', 'base_estimator', 'n_calls', 'n_random_starts
→˓', 'acq_func', 'acq_optimizer', 'x0', 'y0', 'random_state', 'verbose', 'callback',
→˓'n_points', 'n_restarts_optimizer', 'xi', 'kappa', 'n_jobs', 'model_queue_size'])
Local variable: dict_keys(['func', 'dimensions', 'base_estimator', 'n_calls', 'n_
→˓random_starts', 'acq_func', 'acq_optimizer', 'x0', 'y0', 'random_state', 'verbose',
→˓'callback', 'n_points', 'n_restarts_optimizer', 'xi', 'kappa', 'n_jobs', 'model_
→˓queue_size'])

Possible problems

• Python versions incompatibility: In general, objects serialized in Python 2 cannot be deserialized in Python 3
and vice versa.

• Security issues: Once again, do not load any files from untrusted sources.

• Extremely large results objects: If your optimization results object

is extremely large, calling skopt.dump with store_objective=False might cause performance issues. This
is due to creation of a deep copy without the objective function. If the objective function it is not critical to you, you
can simply delete it before calling skopt.dump. In this case, no deep copy is created:

del res.specs['args']['func']

dump(res, 'result_without_objective_2.pkl')

Total running time of the script: (0 minutes 2.774 seconds)

Estimated memory usage: 11 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

20 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

4.1.4 Comparing surrogate models

Tim Head, July 2016. Reformatted by Holger Nahrstaedt 2020

Bayesian optimization or sequential model-based optimization uses a surrogate model to model the expensive to
evaluate function func. There are several choices for what kind of surrogate model to use. This notebook compares
the performance of:

• gaussian processes,

• extra trees, and

• random forests

as surrogate models. A purely random optimization strategy is also used as a baseline.

print(__doc__)
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt

Toy model

We will use the benchmarks.branin function as toy model for the expensive function. In a real world application
this function would be unknown and expensive to evaluate.

from skopt.benchmarks import branin as _branin

def branin(x, noise_level=0.):
return _branin(x) + noise_level * np.random.randn()

from matplotlib.colors import LogNorm

def plot_branin():
fig, ax = plt.subplots()

x1_values = np.linspace(-5, 10, 100)
x2_values = np.linspace(0, 15, 100)
x_ax, y_ax = np.meshgrid(x1_values, x2_values)
vals = np.c_[x_ax.ravel(), y_ax.ravel()]
fx = np.reshape([branin(val) for val in vals], (100, 100))

cm = ax.pcolormesh(x_ax, y_ax, fx,
norm=LogNorm(vmin=fx.min(),

vmax=fx.max()))

minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,

lw=0, label="Minima")

cb = fig.colorbar(cm)
cb.set_label("f(x)")

ax.legend(loc="best", numpoints=1)

ax.set_xlabel("X1")

(continues on next page)

4.1. Miscellaneous examples 21

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

ax.set_xlim([-5, 10])
ax.set_ylabel("X2")
ax.set_ylim([0, 15])

plot_branin()

This shows the value of the two-dimensional branin function and the three minima.

Objective

The objective of this example is to find one of these minima in as few iterations as possible. One iteration is defined
as one call to the benchmarks.branin function.

We will evaluate each model several times using a different seed for the random number generator. Then compare the
average performance of these models. This makes the comparison more robust against models that get “lucky”.

from functools import partial
from skopt import gp_minimize, forest_minimize, dummy_minimize

func = partial(branin, noise_level=2.0)
bounds = [(-5.0, 10.0), (0.0, 15.0)]
n_calls = 60

22 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

def run(minimizer, n_iter=5):
return [minimizer(func, bounds, n_calls=n_calls, random_state=n)

for n in range(n_iter)]

Random search
dummy_res = run(dummy_minimize)

Gaussian processes
gp_res = run(gp_minimize)

Random forest
rf_res = run(partial(forest_minimize, base_estimator="RF"))

Extra trees
et_res = run(partial(forest_minimize, base_estimator="ET"))

Note that this can take a few minutes.

from skopt.plots import plot_convergence

plot = plot_convergence(("dummy_minimize", dummy_res),
("gp_minimize", gp_res),
("forest_minimize('rf')", rf_res),
("forest_minimize('et)", et_res),
true_minimum=0.397887, yscale="log")

plot.legend(loc="best", prop={'size': 6}, numpoints=1)

4.1. Miscellaneous examples 23

scikit-optimize Documentation, Release 0.7.4

Out:

<matplotlib.legend.Legend object at 0x7f8322d9f2e0>

This plot shows the value of the minimum found (y axis) as a function of the number of iterations performed so far (x
axis). The dashed red line indicates the true value of the minimum of the benchmarks.branin function.

For the first ten iterations all methods perform equally well as they all start by creating ten random samples before
fitting their respective model for the first time. After iteration ten the next point at which to evaluate benchmarks.
branin is guided by the model, which is where differences start to appear.

Each minimizer only has access to noisy observations of the objective function, so as time passes (more iterations) it
will start observing values that are below the true value simply because they are fluctuations.

Total running time of the script: (3 minutes 22.036 seconds)

Estimated memory usage: 65 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.5 Interruptible optimization runs with checkpoints

Christian Schell, Mai 2018 Reformatted by Holger Nahrstaedt 2020

24 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Problem statement

Optimization runs can take a very long time and even run for multiple days. If for some reason the process has to be
interrupted results are irreversibly lost, and the routine has to start over from the beginning.

With the help of the callbacks.CheckpointSaver callback the optimizer’s current state can be saved after
each iteration, allowing to restart from that point at any time.

This is useful, for example,

• if you don’t know how long the process will take and cannot hog computational resources forever

• if there might be system failures due to shaky infrastructure (or colleagues. . .)

• if you want to adjust some parameters and continue with the already obtained results

print(__doc__)
import sys
import numpy as np
np.random.seed(777)
import os

The followings are hacks to allow sphinx-gallery to run the example.
sys.path.insert(0, os.getcwd())
main_dir = os.path.basename(sys.modules['__main__'].__file__)
IS_RUN_WITH_SPHINX_GALLERY = main_dir != os.getcwd()

Simple example

We will use pretty much the same optimization problem as in the Bayesian optimization with skopt notebook. Addi-
tionally we will instantiate the callbacks.CheckpointSaver and pass it to the minimizer:

from skopt import gp_minimize
from skopt import callbacks
from skopt.callbacks import CheckpointSaver

noise_level = 0.1

if IS_RUN_WITH_SPHINX_GALLERY:
When this example is run with sphinx gallery, it breaks the pickling
capacity for multiprocessing backend so we have to modify the way we
define our functions. This has nothing to do with the example.
from utils import obj_fun

else:
def obj_fun(x, noise_level=noise_level):

return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() *
→˓noise_level

checkpoint_saver = CheckpointSaver("./checkpoint.pkl", compress=9) # keyword
→˓arguments will be passed to `skopt.dump`

gp_minimize(obj_fun, # the function to minimize
[(-20.0, 20.0)], # the bounds on each dimension of x
x0=[-20.], # the starting point
acq_func="LCB", # the acquisition function (optional)
n_calls=10, # the number of evaluations of f

→˓including at x0
n_random_starts=0, # the number of random initialization

→˓points (continues on next page)

4.1. Miscellaneous examples 25

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

callback=[checkpoint_saver], # a list of callbacks including the
→˓checkpoint saver

random_state=777);

Out:

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

fun: -0.17524445239614728
func_vals: array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,

0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491])
models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=1),

n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',

(continues on next page)

26 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

random_state=655685735), GaussianProcessRegressor(alpha=1e-
→˓10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=1),

n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735)]

random_state: RandomState(MT19937) at 0x7F8322CE7B40
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize

→˓')])
specs: {'args': {'func': <function obj_fun at 0x7f8320d43d30>, 'dimensions':

→˓Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_
→˓estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0,

→˓ 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [-20.0], 'y0': None, 'random_
→˓state': RandomState(MT19937) at 0x7F8322CE7B40, 'verbose': False, 'callback': [
→˓<skopt.callbacks.CheckpointSaver object at 0x7f831a509100>], 'n_points': 10000, 'n_
→˓restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size':
→˓None}, 'function': 'base_minimize'}

x: [20.0]
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0],

→˓[20.0], [20.0]]

Now let’s assume this did not finish at once but took some long time: you started this on Friday night, went out for

4.1. Miscellaneous examples 27

scikit-optimize Documentation, Release 0.7.4

the weekend and now, Monday morning, you’re eager to see the results. However, instead of the notebook server you
only see a blank page and your colleague Garry tells you that he had had an update scheduled for Sunday noon – who
doesn’t like updates?

gp_minimize did not finish, and there is no res variable with the actual results!

Restoring the last checkpoint

Luckily we employed the callbacks.CheckpointSaver and can now restore the latest result with skopt.
load (see Store and load skopt optimization results for more information on that)

from skopt import load

res = load('./checkpoint.pkl')

res.fun

Out:

-0.17524445239614728

Continue the search

The previous results can then be used to continue the optimization process:

x0 = res.x_iters
y0 = res.func_vals

gp_minimize(obj_fun, # the function to minimize
[(-20.0, 20.0)], # the bounds on each dimension of x
x0=x0, # already examined values for x
y0=y0, # observed values for x0
acq_func="LCB", # the acquisition function (optional)
n_calls=10, # the number of evaluations of f including at x0
n_random_starts=0, # the number of random initialization points
callback=[checkpoint_saver],
random_state=777);

Out:

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

(continues on next page)

28 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

/home/circleci/project/skopt/optimizer/optimizer.py:409: UserWarning: The objective
→˓has been evaluated at this point before.
warnings.warn("The objective has been evaluated "

fun: -0.17524445239614728
func_vals: array([-0.04682088, -0.08228249, -0.00653801, -0.07133619, 0.09063509,

0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491,
0.05448095, 0.18951609, -0.07693575, -0.14030959, -0.06324675,

-0.05588737, -0.12332314, -0.04395035, 0.09147873, 0.02650409])
models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=1),

n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True, (continues on next page)

4.1. Miscellaneous examples 29

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=1),

n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), GaussianProcessRegressor(alpha=1e-

→˓10, copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=1),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735)]

random_state: RandomState(MT19937) at 0x7F8322CE7B40
space: Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize

→˓')])
specs: {'args': {'func': <function obj_fun at 0x7f8320d43d30>, 'dimensions':

→˓Space([Real(low=-20.0, high=20.0, prior='uniform', transform='normalize')]), 'base_
→˓estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise='gaussian',
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=655685735), 'n_calls': 10, 'n_random_starts': 0,

→˓ 'acq_func': 'LCB', 'acq_optimizer': 'auto', 'x0': [[-20.0], [20.0], [20.0], [-20.
→˓0], [-20.0], [20.0], [-20.0], [20.0], [20.0], [20.0]], 'y0': array([-0.04682088, -0.
→˓08228249, -0.00653801, -0.07133619, 0.09063509,

0.07662367, 0.08260541, -0.13236828, -0.17524445, 0.10024491]), 'random_
→˓state': RandomState(MT19937) at 0x7F8322CE7B40, 'verbose': False, 'callback': [
→˓<skopt.callbacks.CheckpointSaver object at 0x7f831a509100>], 'n_points': 10000, 'n_
→˓restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1, 'model_queue_size':
→˓None}, 'function': 'base_minimize'}

x: [20.0]
x_iters: [[-20.0], [20.0], [20.0], [-20.0], [-20.0], [20.0], [-20.0], [20.0],

→˓[20.0], [20.0], [20.0], [20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.0], [-20.
→˓0], [-20.0], [-20.0]]

Possible problems

• changes in search space: You can use this technique to interrupt the search, tune the search space and continue
the optimization. Note that the optimizers will complain if x0 contains parameter values not covered by the

30 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

dimension definitions, so in many cases shrinking the search space will not work without deleting the offending
runs from x0 and y0.

• see Store and load skopt optimization results

for more information on how the results get saved and possible caveats

Total running time of the script: (0 minutes 3.680 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.6 Async optimization Loop

Bayesian optimization is used to tune parameters for walking robots or other experiments that are not a simple (ex-
pensive) function call.

Tim Head, February 2017. Reformatted by Holger Nahrstaedt 2020

They often follow a pattern a bit like this:

1. ask for a new set of parameters

2. walk to the experiment and program in the new parameters

3. observe the outcome of running the experiment

4. walk back to your laptop and tell the optimizer about the outcome

5. go to step 1

A setup like this is difficult to implement with the *_minimize() function interface. This is why scikit-optimize has a
ask-and-tell interface that you can use when you want to control the execution of the optimization loop.

This notebook demonstrates how to use the ask and tell interface.

print(__doc__)

import numpy as np
np.random.seed(1234)

import matplotlib.pyplot as plt

The Setup

We will use a simple 1D problem to illustrate the API. This is a little bit artificial as you normally would not use the
ask-and-tell interface if you had a function you can call to evaluate the objective.

from skopt.learning import ExtraTreesRegressor
from skopt import Optimizer

noise_level = 0.1

Our 1D toy problem, this is the function we are trying to minimize

4.1. Miscellaneous examples 31

scikit-optimize Documentation, Release 0.7.4

def objective(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2))\

+ np.random.randn() * noise_level

Here a quick plot to visualize what the function looks like:

Plot f(x) + contours
plt.set_cmap("viridis")
x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = np.array([objective(x_i, noise_level=0.0) for x_i in x])
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate(([fx_i - 1.9600 * noise_level for fx_i in fx],
[fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])),

alpha=.2, fc="r", ec="None")
plt.legend()
plt.grid()
plt.show()

Now we setup the Optimizer class. The arguments follow the meaning and naming of the *_minimize() functions.
An important difference is that you do not pass the objective function to the optimizer.

opt = Optimizer([(-2.0, 2.0)], "ET", acq_optimizer="sampling")

To obtain a suggestion for the point at which to evaluate the objective

(continues on next page)

32 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

you call the ask() method of opt:

next_x = opt.ask()
print(next_x)

Out:

[-1.7121321838148869]

In a real world use case you would probably go away and use this parameter in your experiment and come back a
while later with the result. In this example we can simply evaluate the objective function and report the value back to
the optimizer:

f_val = objective(next_x)
opt.tell(next_x, f_val)

Out:

fun: -0.032758350111535384
func_vals: array([-0.03275835])

models: []
random_state: RandomState(MT19937) at 0x7F833EAFAD40

space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='identity')])
specs: None

x: [-1.7121321838148869]
x_iters: [[-1.7121321838148869]]

Like *_minimize() the first few points are random suggestions as there is no data yet with which to fit a surrogate
model.

for i in range(9):
next_x = opt.ask()
f_val = objective(next_x)
opt.tell(next_x, f_val)

We can now plot the random suggestions and the first model that has been fit:

from skopt.acquisition import gaussian_ei

def plot_optimizer(opt, x, fx):
model = opt.models[-1]
x_model = opt.space.transform(x.tolist())

Plot true function.
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([fx - 1.9600 * noise_level,
fx[::-1] + 1.9600 * noise_level]),

alpha=.2, fc="r", ec="None")

Plot Model(x) + contours
y_pred, sigma = model.predict(x_model, return_std=True)
plt.plot(x, y_pred, "g--", label=r"$\mu(x)$")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,

(continues on next page)

4.1. Miscellaneous examples 33

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

(y_pred + 1.9600 * sigma)[::-1]]),
alpha=.2, fc="g", ec="None")

Plot sampled points
plt.plot(opt.Xi, opt.yi,

"r.", markersize=8, label="Observations")

acq = gaussian_ei(x_model, model, y_opt=np.min(opt.yi))
shift down to make a better plot
acq = 4 * acq - 2
plt.plot(x, acq, "b", label="EI(x)")
plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')

Adjust plot layout
plt.grid()
plt.legend(loc='best')

plot_optimizer(opt, x, fx)

Let us sample a few more points and plot the optimizer again:

for i in range(10):
next_x = opt.ask()

(continues on next page)

34 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

f_val = objective(next_x)
opt.tell(next_x, f_val)

plot_optimizer(opt, x, fx)

By using the Optimizer class directly you get control over the optimization loop.

You can also pickle your Optimizer instance if you want to end the process running it and resume it later. This is
handy if your experiment takes a very long time and you want to shutdown your computer in the meantime:

import pickle

with open('my-optimizer.pkl', 'wb') as f:
pickle.dump(opt, f)

with open('my-optimizer.pkl', 'rb') as f:
opt_restored = pickle.load(f)

Total running time of the script: (0 minutes 5.175 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1. Miscellaneous examples 35

scikit-optimize Documentation, Release 0.7.4

4.1.7 Scikit-learn hyperparameter search wrapper

Iaroslav Shcherbatyi, Tim Head and Gilles Louppe. June 2017. Reformatted by Holger Nahrstaedt 2020

Introduction

This example assumes basic familiarity with scikit-learn.

Search for parameters of machine learning models that result in best cross-validation performance is necessary in
almost all practical cases to get a model with best generalization estimate. A standard approach in scikit-learn is
using sklearn.model_selection.GridSearchCV class, which takes a set of values for every parameter to
try, and simply enumerates all combinations of parameter values. The complexity of such search grows exponen-
tially with the addition of new parameters. A more scalable approach is using sklearn.model_selection.
RandomizedSearchCV, which however does not take advantage of the structure of a search space.

Scikit-optimize provides a drop-in replacement for sklearn.model_selection.GridSearchCV, which uti-
lizes Bayesian Optimization where a predictive model referred to as “surrogate” is used to model the search space and
utilized to arrive at good parameter values combination as soon as possible.

Note: for a manual hyperparameter optimization example, see “Hyperparameter Optimization” notebook.

print(__doc__)
import numpy as np

Minimal example

A minimal example of optimizing hyperparameters of SVC (Support Vector machine Classifier) is given below.

from skopt import BayesSearchCV
from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, test_size=.
→˓25, random_state=0)

log-uniform: understand as search over p = exp(x) by varying x
opt = BayesSearchCV(

SVC(),
{

'C': (1e-6, 1e+6, 'log-uniform'),
'gamma': (1e-6, 1e+1, 'log-uniform'),
'degree': (1, 8), # integer valued parameter
'kernel': ['linear', 'poly', 'rbf'], # categorical parameter

},
n_iter=32,
cv=3

)

opt.fit(X_train, y_train)

print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))

Out:

36 Chapter 4. Examples

http://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

scikit-optimize Documentation, Release 0.7.4

val. score: 0.991833704528582
test score: 0.9933333333333333

Advanced example

In practice, one wants to enumerate over multiple predictive model classes, with different search spaces and number
of evaluations per class. An example of such search over parameters of Linear SVM, Kernel SVM, and decision trees
is given below.

from skopt import BayesSearchCV
from skopt.space import Real, Categorical, Integer

from sklearn.datasets import load_digits
from sklearn.svm import LinearSVC, SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split

X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

pipeline class is used as estimator to enable
search over different model types
pipe = Pipeline([

('model', SVC())
])

single categorical value of 'model' parameter is
sets the model class
We will get ConvergenceWarnings because the problem is not well-conditioned.
But that's fine, this is just an example.
linsvc_search = {

'model': [LinearSVC(max_iter=1000)],
'model__C': (1e-6, 1e+6, 'log-uniform'),

}

explicit dimension classes can be specified like this
svc_search = {

'model': Categorical([SVC()]),
'model__C': Real(1e-6, 1e+6, prior='log-uniform'),
'model__gamma': Real(1e-6, 1e+1, prior='log-uniform'),
'model__degree': Integer(1,8),
'model__kernel': Categorical(['linear', 'poly', 'rbf']),

}

opt = BayesSearchCV(
pipe,
[(svc_search, 20), (linsvc_search, 16)], # (parameter space, # of evaluations)
cv=3

)

opt.fit(X_train, y_train)

print("val. score: %s" % opt.best_score_)
print("test score: %s" % opt.score(X_test, y_test))

Out:

4.1. Miscellaneous examples 37

scikit-optimize Documentation, Release 0.7.4

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations. (continues on next page)

38 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

warnings.warn("Liblinear failed to converge, increase "
/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/scikit_learn-0.22.1-
→˓py3.8-linux-x86_64.egg/sklearn/svm/_base.py:946: ConvergenceWarning: Liblinear
→˓failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "

val. score: 0.9851521900519673
test score: 0.9822222222222222

Progress monitoring and control using callback argument of fit method

It is possible to monitor the progress of BayesSearchCV with an event handler that is called on every step of
subspace exploration. For single job mode, this is called on every evaluation of model configuration, and for parallel

4.1. Miscellaneous examples 39

scikit-optimize Documentation, Release 0.7.4

mode, this is called when n_jobs model configurations are evaluated in parallel.

Additionally, exploration can be stopped if the callback returns True. This can be used to stop the exploration early,
for instance when the accuracy that you get is sufficiently high.

An example usage is shown below.

from skopt import BayesSearchCV

from sklearn.datasets import load_iris
from sklearn.svm import SVC

X, y = load_iris(True)

searchcv = BayesSearchCV(
SVC(gamma='scale'),
search_spaces={'C': (0.01, 100.0, 'log-uniform')},
n_iter=10,
cv=3

)

callback handler
def on_step(optim_result):

score = searchcv.best_score_
print("best score: %s" % score)
if score >= 0.98:

print('Interrupting!')
return True

searchcv.fit(X, y, callback=on_step)

Out:

best score: 0.9466666666666667
best score: 0.9733333333333334
best score: 0.9733333333333334
best score: 0.9733333333333334
best score: 0.9733333333333334
best score: 0.9733333333333334
best score: 0.98
Interrupting!

BayesSearchCV(cv=3, error_score='raise',
estimator=SVC(C=1.0, break_ties=False, cache_size=200,

class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='scale', kernel='rbf', max_iter=-1,
probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False),

fit_params=None, iid=True, n_iter=10, n_jobs=1, n_points=1,
optimizer_kwargs=None, pre_dispatch='2*n_jobs', random_state=None,
refit=True, return_train_score=False, scoring=None,
search_spaces={'C': (0.01, 100.0, 'log-uniform')}, verbose=0)

40 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Counting total iterations that will be used to explore all subspaces

Subspaces in previous examples can further increase in complexity if you add new model subspaces or dimensions for
feature extraction pipelines. For monitoring of progress, you would like to know the total number of iterations it will
take to explore all subspaces. This can be calculated with total_iterations property, as in the code below.

from skopt import BayesSearchCV

from sklearn.datasets import load_iris
from sklearn.svm import SVC

X, y = load_iris(True)

searchcv = BayesSearchCV(
SVC(),
search_spaces=[

({'C': (0.1, 1.0)}, 19), # 19 iterations for this subspace
{'gamma':(0.1, 1.0)}

],
n_iter=23

)

print(searchcv.total_iterations)

Out:

42

Total running time of the script: (0 minutes 50.878 seconds)

Estimated memory usage: 9 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.8 Exploration vs exploitation

Sigurd Carlen, September 2019. Reformatted by Holger Nahrstaedt 2020

We can control how much the acqusition function favors exploration and exploitation by tweaking the two parameters
kappa and xi. Higher values means more exploration and less exploitation and vice versa with low values.

kappa is only used if acq_func is set to “LCB”. xi is used when acq_func is “EI” or “PI”. By default the acqusition
function is set to “gp_hedge” which chooses the best of these three. Therefore I recommend not using gp_hedge when
tweaking exploration/exploitation, but instead choosing “LCB”, “EI” or “PI.

The way to pass kappa and xi to the optimizer is to use the named argument “acq_func_kwargs”. This is a dict of extra
arguments for the aqcuisittion function.

If you want opt.ask() to give a new acquisition value imdediatly after tweaking kappa or xi call opt.update_next(). This
ensures that the next value is updated with the new acquisition parameters.

print(__doc__)

import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt

4.1. Miscellaneous examples 41

scikit-optimize Documentation, Release 0.7.4

Toy example

First we define our objective like in the ask-and-tell example notebook and define a plotting function. We do however
only use on initial random point. All points afterthe first one is therefore choosen by the acquisition function.

from skopt.learning import ExtraTreesRegressor
from skopt import Optimizer

noise_level = 0.1

Our 1D toy problem, this is the function we are trying to
minimize
def objective(x, noise_level=noise_level):

return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +\
np.random.randn() * noise_level

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points = 1,
acq_optimizer="sampling")

x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = np.array([objective(x_i, noise_level=0.0) for x_i in x])

from skopt.acquisition import gaussian_ei
def plot_optimizer(opt, x, fx):

model = opt.models[-1]
x_model = opt.space.transform(x.tolist())

Plot true function.
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([fx - 1.9600 * noise_level,
fx[::-1] + 1.9600 * noise_level]),

alpha=.2, fc="r", ec="None")

Plot Model(x) + contours
y_pred, sigma = model.predict(x_model, return_std=True)
plt.plot(x, y_pred, "g--", label=r"$\mu(x)$")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.2, fc="g", ec="None")

Plot sampled points
plt.plot(opt.Xi, opt.yi,

"r.", markersize=8, label="Observations")

acq = gaussian_ei(x_model, model, y_opt=np.min(opt.yi))
shift down to make a better plot
acq = 4 * acq - 2
plt.plot(x, acq, "b", label="EI(x)")
plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')

Adjust plot layout
plt.grid()
plt.legend(loc='best')

We run a an optimization loop with standard settings

42 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

for i in range(30):
next_x = opt.ask()
f_val = objective(next_x)
opt.tell(next_x, f_val)

The same output could be created with opt.run(objective, n_iter=30)
plot_optimizer(opt, x, fx)

We see that some minima is found and “exploited”

Now lets try to set kappa and xi using’to other values and pass it to the optimizer:

acq_func_kwargs = {"xi": 10000, "kappa": 10000}

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

4.1. Miscellaneous examples 43

scikit-optimize Documentation, Release 0.7.4

We see that the points are more random now.

This works both for kappa when using acq_func=”LCB”:

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="LCB", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

44 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

And for xi when using acq_func=”EI”: or acq_func=”PI”:

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="PI", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

4.1. Miscellaneous examples 45

scikit-optimize Documentation, Release 0.7.4

We can also favor exploitaton:

acq_func_kwargs = {"xi": 0.000001, "kappa": 0.001}

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="LCB", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

46 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="EI", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

4.1. Miscellaneous examples 47

scikit-optimize Documentation, Release 0.7.4

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="PI", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

48 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Note that negative values does not work with the “PI”-acquisition function but works with “EI”:

acq_func_kwargs = {"xi": -1000000000000}

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="PI", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

4.1. Miscellaneous examples 49

scikit-optimize Documentation, Release 0.7.4

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="EI", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

50 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Changing kappa and xi on the go

If we want to change kappa or ki at any point during our optimization process we just replace opt.acq_func_kwargs.
Remember to call opt.update_next() after the change, in order for next point to be recalculated.

acq_func_kwargs = {"kappa": 0}

opt = Optimizer([(-2.0, 2.0)], "GP", n_initial_points=1,
acq_func="LCB", acq_optimizer="sampling",
acq_func_kwargs=acq_func_kwargs)

opt.acq_func_kwargs

Out:

{'kappa': 0}

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

4.1. Miscellaneous examples 51

scikit-optimize Documentation, Release 0.7.4

acq_func_kwargs = {"kappa": 100000}

opt.acq_func_kwargs = acq_func_kwargs
opt.update_next()

opt.run(objective, n_iter=20)
plot_optimizer(opt, x, fx)

52 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Total running time of the script: (0 minutes 34.924 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.9 Bayesian optimization with skopt

Gilles Louppe, Manoj Kumar July 2016. Reformatted by Holger Nahrstaedt 2020

Problem statement

We are interested in solving

𝑥* = 𝑎𝑟𝑔min
𝑥

𝑓(𝑥)

under the constraints that

• 𝑓 is a black box for which no closed form is known (nor its gradients);

• 𝑓 is expensive to evaluate;

• and evaluations of 𝑦 = 𝑓(𝑥) may be noisy.

4.1. Miscellaneous examples 53

scikit-optimize Documentation, Release 0.7.4

Disclaimer. If you do not have these constraints, then there is certainly a better optimization algorithm than Bayesian
optimization.

Bayesian optimization loop

For 𝑡 = 1 : 𝑇 :

1. Given observations (𝑥𝑖, 𝑦𝑖 = 𝑓(𝑥𝑖)) for 𝑖 = 1 : 𝑡, build a probabilistic model for the objective 𝑓 . Integrate
out all possible true functions, using Gaussian process regression.

2. optimize a cheap acquisition/utility function u based on the posterior distribution for sampling the next
point.

𝑥𝑡+1 = 𝑎𝑟𝑔min
𝑥

𝑢(𝑥)

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation 𝑦𝑡+1 at 𝑥𝑡+1.

Acquisition functions

Acquisition functions 𝑢(𝑥) specify which sample 𝑥: should be tried next:

• Expected improvement (default): −𝐸𝐼(𝑥) = −E[𝑓(𝑥)− 𝑓(𝑥+
𝑡)]

• Lower confidence bound: 𝐿𝐶𝐵(𝑥) = 𝜇𝐺𝑃 (𝑥) + 𝜅𝜎𝐺𝑃 (𝑥)

• Probability of improvement: −𝑃𝐼(𝑥) = −𝑃 (𝑓(𝑥) ≥ 𝑓(𝑥+
𝑡) + 𝜅)

where 𝑥+
𝑡 is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., 𝜅) for controlling the exploration-exploitation trade-off. -
Search in regions where 𝜇𝐺𝑃 (𝑥) is high (exploitation) - Probe regions where uncertainty 𝜎𝐺𝑃 (𝑥) is high (exploration)

print(__doc__)

import numpy as np
np.random.seed(237)
import matplotlib.pyplot as plt

Toy example

Let assume the following noisy function 𝑓 :

noise_level = 0.1

def f(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2))\

+ np.random.randn() * noise_level

Note. In skopt, functions 𝑓 are assumed to take as input a 1D vector 𝑥: represented as an array-like and to return a
scalar 𝑓(𝑥):.

54 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Plot f(x) + contours
x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = [f(x_i, noise_level=0.0) for x_i in x]
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate(([fx_i - 1.9600 * noise_level for fx_i in fx],
[fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])),

alpha=.2, fc="r", ec="None")
plt.legend()
plt.grid()
plt.show()

Bayesian optimization based on gaussian process regression is implemented in gp_minimize and can be carried out
as follows:

from skopt import gp_minimize

res = gp_minimize(f, # the function to minimize
[(-2.0, 2.0)], # the bounds on each dimension of x
acq_func="EI", # the acquisition function
n_calls=15, # the number of evaluations of f
n_random_starts=5, # the number of random initialization points
noise=0.1**2, # the noise level (optional)
random_state=1234) # the random seed

Accordingly, the approximated minimum is found to be:

4.1. Miscellaneous examples 55

scikit-optimize Documentation, Release 0.7.4

"x^*=%.4f, f(x^*)=%.4f" % (res.x[0], res.fun)

Out:

'x^*=-0.3508, f(x^*)=-1.0147'

For further inspection of the results, attributes of the res named tuple provide the following information:

• x [float]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [array]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]: parameters passed to the function.

print(res)

Out:

fun: -1.0146594081392317
func_vals: array([0.03716044, 0.00673852, 0.63515442, -0.16042062, 0.10695907,

-0.23193728, -0.60259431, -0.04943778, -1.01465941, -0.98480886,
-0.87449015, 0.18102445, -0.10782771, 0.01197229, -0.80618926])
models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=0.01),

n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True, (continues on next page)

56 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

kernel=1**2 * Matern(length_scale=1, nu=2.5) +
→˓WhiteKernel(noise_level=0.01),

n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), GaussianProcessRegressor(alpha=1e-10,

→˓ copy_X_train=True,
kernel=1**2 * Matern(length_scale=1, nu=2.5) +

→˓WhiteKernel(noise_level=0.01),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775)]

random_state: RandomState(MT19937) at 0x7F8322CE7B40
space: Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize

→˓')])
specs: {'args': {'func': <function f at 0x7f832819e430>, 'dimensions':

→˓Space([Real(low=-2.0, high=2.0, prior='uniform', transform='normalize')]), 'base_
→˓estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,

kernel=1**2 * Matern(length_scale=1, nu=2.5),
n_restarts_optimizer=2, noise=0.010000000000000002,
normalize_y=True, optimizer='fmin_l_bfgs_b',
random_state=822569775), 'n_calls': 15, 'n_random_starts': 5,

→˓'acq_func': 'EI', 'acq_optimizer': 'auto', 'x0': None, 'y0': None, 'random_state':
→˓RandomState(MT19937) at 0x7F8322CE7B40, 'verbose': False, 'callback': None, 'n_
→˓points': 10000, 'n_restarts_optimizer': 5, 'xi': 0.01, 'kappa': 1.96, 'n_jobs': 1,
→˓'model_queue_size': None}, 'function': 'base_minimize'}

x: [-0.35076964188527904]
x_iters: [[-0.009345334109402526], [1.2713537644662787], [0.4484475787090836],

→˓[1.0854396754496047], [1.4426790855107496], [0.9698921802985794], [-0.
→˓4464493263345517], [-0.6474638284799423], [-0.35076964188527904], [-0.
→˓28714767658880325], [-0.2968537755362253], [-2.0], [2.0], [-1.3149517825054502], [-
→˓0.32181607448732485]]

Together these attributes can be used to visually inspect the results of the minimization, such as the convergence trace

4.1. Miscellaneous examples 57

scikit-optimize Documentation, Release 0.7.4

or the acquisition function at the last iteration:

from skopt.plots import plot_convergence
plot_convergence(res);

Out:

<matplotlib.axes._subplots.AxesSubplot object at 0x7f831a6b7ac0>

Let us now visually examine

1. The approximation of the fit gp model to the original function.

2. The acquisition values that determine the next point to be queried.

from skopt.acquisition import gaussian_ei

plt.rcParams["figure.figsize"] = (8, 14)

x = np.linspace(-2, 2, 400).reshape(-1, 1)
x_gp = res.space.transform(x.tolist())
fx = np.array([f(x_i, noise_level=0.0) for x_i in x])

Plot the 5 iterations following the 5 random points

for n_iter in range(5):
gp = res.models[n_iter]

(continues on next page)

58 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

curr_x_iters = res.x_iters[:5+n_iter]
curr_func_vals = res.func_vals[:5+n_iter]

Plot true function.
plt.subplot(5, 2, 2*n_iter+1)
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([fx - 1.9600 * noise_level,
fx[::-1] + 1.9600 * noise_level]),

alpha=.2, fc="r", ec="None")

Plot GP(x) + contours
y_pred, sigma = gp.predict(x_gp, return_std=True)
plt.plot(x, y_pred, "g--", label=r"$\mu_{GP}(x)$")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.2, fc="g", ec="None")

Plot sampled points
plt.plot(curr_x_iters, curr_func_vals,

"r.", markersize=8, label="Observations")

Adjust plot layout
plt.grid()

if n_iter == 0:
plt.legend(loc="best", prop={'size': 6}, numpoints=1)

if n_iter != 4:
plt.tick_params(axis='x', which='both', bottom='off',

top='off', labelbottom='off')

Plot EI(x)
plt.subplot(5, 2, 2*n_iter+2)
acq = gaussian_ei(x_gp, gp, y_opt=np.min(curr_func_vals))
plt.plot(x, acq, "b", label="EI(x)")
plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')

next_x = res.x_iters[5+n_iter]
next_acq = gaussian_ei(res.space.transform([next_x]), gp,

y_opt=np.min(curr_func_vals))
plt.plot(next_x, next_acq, "bo", markersize=6, label="Next query point")

Adjust plot layout
plt.ylim(0, 0.1)
plt.grid()

if n_iter == 0:
plt.legend(loc="best", prop={'size': 6}, numpoints=1)

if n_iter != 4:
plt.tick_params(axis='x', which='both', bottom='off',

top='off', labelbottom='off')

plt.show()

4.1. Miscellaneous examples 59

scikit-optimize Documentation, Release 0.7.4

60 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

The first column shows the following:

1. The true function.

2. The approximation to the original function by the gaussian process model

3. How sure the GP is about the function.

The second column shows the acquisition function values after every surrogate model is fit. It is possible that we do
not choose the global minimum but a local minimum depending on the minimizer used to minimize the acquisition
function.

At the points closer to the points previously evaluated at, the variance dips to zero.

Finally, as we increase the number of points, the GP model approaches the actual function. The final few points are
clustered around the minimum because the GP does not gain anything more by further exploration:

plt.rcParams["figure.figsize"] = (6, 4)

Plot f(x) + contours
x = np.linspace(-2, 2, 400).reshape(-1, 1)
x_gp = res.space.transform(x.tolist())

fx = [f(x_i, noise_level=0.0) for x_i in x]
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate(([fx_i - 1.9600 * noise_level for fx_i in fx],
[fx_i + 1.9600 * noise_level for fx_i in fx[::-1]])),

alpha=.2, fc="r", ec="None")

Plot GP(x) + contours
gp = res.models[-1]
y_pred, sigma = gp.predict(x_gp, return_std=True)

plt.plot(x, y_pred, "g--", label=r"$\mu_{GP}(x)$")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.2, fc="g", ec="None")

Plot sampled points
plt.plot(res.x_iters,

res.func_vals,
"r.", markersize=15, label="Observations")

plt.title(r"$x^* = %.4f, f(x^*) = %.4f$" % (res.x[0], res.fun))
plt.legend(loc="best", prop={'size': 8}, numpoints=1)
plt.grid()

plt.show()

4.1. Miscellaneous examples 61

scikit-optimize Documentation, Release 0.7.4

Total running time of the script: (0 minutes 3.780 seconds)

Estimated memory usage: 8 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.1.10 Use different base estimators for optimization

Sigurd Carlen, September 2019. Reformatted by Holger Nahrstaedt 2020

To use different base_estimator or create a regressor with different parameters, we can create a regressor object and
set it as kernel.

print(__doc__)

import numpy as np
np.random.seed(1234)
import matplotlib.pyplot as plt

Toy example

Let assume the following noisy function 𝑓 :

noise_level = 0.1

Our 1D toy problem, this is the function we are trying to
minimize

(continues on next page)

62 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

def objective(x, noise_level=noise_level):
return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2))\

+ np.random.randn() * noise_level

from skopt import Optimizer
opt_gp = Optimizer([(-2.0, 2.0)], base_estimator="GP", n_initial_points=5,

acq_optimizer="sampling", random_state=42)

x = np.linspace(-2, 2, 400).reshape(-1, 1)
fx = np.array([objective(x_i, noise_level=0.0) for x_i in x])

from skopt.acquisition import gaussian_ei

def plot_optimizer(res, next_x, x, fx, n_iter, max_iters=5):
x_gp = res.space.transform(x.tolist())
gp = res.models[-1]
curr_x_iters = res.x_iters
curr_func_vals = res.func_vals

Plot true function.
ax = plt.subplot(max_iters, 2, 2 * n_iter + 1)
plt.plot(x, fx, "r--", label="True (unknown)")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([fx - 1.9600 * noise_level,
fx[::-1] + 1.9600 * noise_level]),

alpha=.2, fc="r", ec="None")
if n_iter < max_iters - 1:

ax.get_xaxis().set_ticklabels([])
Plot GP(x) + contours
y_pred, sigma = gp.predict(x_gp, return_std=True)
plt.plot(x, y_pred, "g--", label=r"$\mu_{GP}(x)$")
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.2, fc="g", ec="None")

Plot sampled points
plt.plot(curr_x_iters, curr_func_vals,

"r.", markersize=8, label="Observations")
plt.title(r"x* = %.4f, f(x*) = %.4f" % (res.x[0], res.fun))
Adjust plot layout
plt.grid()

if n_iter == 0:
plt.legend(loc="best", prop={'size': 6}, numpoints=1)

if n_iter != 4:
plt.tick_params(axis='x', which='both', bottom='off',

top='off', labelbottom='off')

Plot EI(x)
ax = plt.subplot(max_iters, 2, 2 * n_iter + 2)
acq = gaussian_ei(x_gp, gp, y_opt=np.min(curr_func_vals))
plt.plot(x, acq, "b", label="EI(x)")

(continues on next page)

4.1. Miscellaneous examples 63

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

plt.fill_between(x.ravel(), -2.0, acq.ravel(), alpha=0.3, color='blue')

if n_iter < max_iters - 1:
ax.get_xaxis().set_ticklabels([])

next_acq = gaussian_ei(res.space.transform([next_x]), gp,
y_opt=np.min(curr_func_vals))

plt.plot(next_x, next_acq, "bo", markersize=6, label="Next query point")

Adjust plot layout
plt.ylim(0, 0.07)
plt.grid()
if n_iter == 0:

plt.legend(loc="best", prop={'size': 6}, numpoints=1)

if n_iter != 4:
plt.tick_params(axis='x', which='both', bottom='off',

top='off', labelbottom='off')

GP kernel

fig = plt.figure()
fig.suptitle("Standard GP kernel")
for i in range(10):

next_x = opt_gp.ask()
f_val = objective(next_x)
res = opt_gp.tell(next_x, f_val)
if i >= 5:

plot_optimizer(res, opt_gp._next_x, x, fx, n_iter=i-5, max_iters=5)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.plot()

64 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Out:

[]

Test different kernels

from skopt.learning import GaussianProcessRegressor
from skopt.learning.gaussian_process.kernels import ConstantKernel, Matern
Gaussian process with Matérn kernel as surrogate model

from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic,
ExpSineSquared, DotProduct,
ConstantKernel)

kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)),
1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1),
1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0,

length_scale_bounds=(0.1, 10.0),
periodicity_bounds=(1.0, 10.0)),

ConstantKernel(0.1, (0.01, 10.0))

* (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.1, 10.0)) ** 2),
1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0),

nu=2.5)]

4.1. Miscellaneous examples 65

scikit-optimize Documentation, Release 0.7.4

for kernel in kernels:
gpr = GaussianProcessRegressor(kernel=kernel, alpha=noise_level ** 2,

normalize_y=True, noise="gaussian",
n_restarts_optimizer=2
)

opt = Optimizer([(-2.0, 2.0)], base_estimator=gpr, n_initial_points=5,
acq_optimizer="sampling", random_state=42)

fig = plt.figure()
fig.suptitle(repr(kernel))
for i in range(10):

next_x = opt.ask()
f_val = objective(next_x)
res = opt.tell(next_x, f_val)
if i >= 5:

plot_optimizer(res, opt._next_x, x, fx, n_iter=i - 5, max_iters=5)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()

•

66 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

•

4.1. Miscellaneous examples 67

scikit-optimize Documentation, Release 0.7.4

•

68 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

•

4.1. Miscellaneous examples 69

scikit-optimize Documentation, Release 0.7.4

•

Total running time of the script: (0 minutes 9.161 seconds)

Estimated memory usage: 13 MB

4.2 Plotting functions

Examples concerning the skopt.plots module.

Note: Click here to download the full example code or to run this example in your browser via Binder

4.2.1 Partial Dependence Plots

Sigurd Carlsen Feb 2019 Holger Nahrstaedt 2020

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter
values for dependency plots.

print(__doc__)
import sys
from skopt.plots import plot_objective
from skopt import forest_minimize
import numpy as np

(continues on next page)

70 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

np.random.seed(123)
import matplotlib.pyplot as plt

Objective function

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter
values for dependency plots

Here we define a function that we evaluate.
def funny_func(x):

s = 0
for i in range(len(x)):

s += (x[i] * i) ** 2
return s

Optimisation using decision trees

We run forest_minimize on the function

bounds = [(-1, 1.),] * 3
n_calls = 150

result = forest_minimize(funny_func, bounds, n_calls=n_calls,
base_estimator="ET",
random_state=4)

Partial dependence plot

Here we see an example of using partial dependence. Even when setting n_points all the way down to 10 from the
default of 40, this method is still very slow. This is because partial dependence calculates 250 extra predictions for
each point on the plots.

_ = plot_objective(result, n_points=10)

4.2. Plotting functions 71

scikit-optimize Documentation, Release 0.7.4

It is possible to change the location of the red dot, which normally shows the position of the found minimum. We
can set it ‘expected_minimum’, which is the minimum value of the surrogate function, obtained by a minimum search
method.

_ = plot_objective(result, n_points=10, minimum='expected_minimum')

72 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Plot without partial dependence

Here we plot without partial dependence. We see that it is a lot faster. Also the values for the other parameters are set
to the default “result” which is the parameter set of the best observed value so far. In the case of funny_func this is
close to 0 for all parameters.

_ = plot_objective(result, sample_source='result', n_points=10)

4.2. Plotting functions 73

scikit-optimize Documentation, Release 0.7.4

Modify the shown minimum

Here we try with setting the minimum parameters to something other than “result”. First we try with “ex-
pected_minimum” which is the set of parameters that gives the miniumum value of the surrogate function, using
scipys minimum search method.

_ = plot_objective(result, n_points=10, sample_source='expected_minimum',
minimum='expected_minimum')

74 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

“expected_minimum_random” is a naive way of finding the minimum of the surrogate by only using random sampling:

_ = plot_objective(result, n_points=10, sample_source='expected_minimum_random',
minimum='expected_minimum_random')

4.2. Plotting functions 75

scikit-optimize Documentation, Release 0.7.4

We can also specify how many initial samples are used for the two different “expected_minimum” methods. We set it
to a low value in the next examples to showcase how it affects the minimum for the two methods.

_ = plot_objective(result, n_points=10, sample_source='expected_minimum_random',
minimum='expected_minimum_random',
n_minimum_search=10)

76 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

_ = plot_objective(result, n_points=10, sample_source="expected_minimum",
minimum='expected_minimum', n_minimum_search=2)

4.2. Plotting functions 77

scikit-optimize Documentation, Release 0.7.4

Set a minimum location

Lastly we can also define these parameters ourself by parsing a list as the minimum argument:

_ = plot_objective(result, n_points=10, sample_source=[1, -0.5, 0.5],
minimum=[1, -0.5, 0.5])

78 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Total running time of the script: (4 minutes 7.363 seconds)

Estimated memory usage: 9 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.2.2 Partial Dependence Plots with categorical values

Sigurd Carlsen Feb 2019 Holger Nahrstaedt 2020

Plot objective now supports optional use of partial dependence as well as different methods of defining parameter
values for dependency plots.

print(__doc__)
import sys

(continues on next page)

4.2. Plotting functions 79

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

from skopt.plots import plot_objective
from skopt import forest_minimize
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from skopt.space import Integer, Categorical
from skopt import plots, gp_minimize
from skopt.plots import plot_objective

objective function

Here we define a function that we evaluate.

def objective(params):
clf = DecisionTreeClassifier(

**{dim.name: val for dim, val in
zip(SPACE, params) if dim.name != 'dummy'})

return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))

Bayesian optimization

SPACE = [
Integer(1, 20, name='max_depth'),
Integer(2, 100, name='min_samples_split'),
Integer(5, 30, name='min_samples_leaf'),
Integer(1, 30, name='max_features'),
Categorical(list('abc'), name='dummy'),
Categorical(['gini', 'entropy'], name='criterion'),
Categorical(list('def'), name='dummy'),

]

result = gp_minimize(objective, SPACE, n_calls=20)

Partial dependence plot

Here we see an example of using partial dependence. Even when setting n_points all the way down to 10 from the
default of 40, this method is still very slow. This is because partial dependence calculates 250 extra predictions for
each point on the plots.

_ = plot_objective(result, n_points=10)

80 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Plot without partial dependence

Here we plot without partial dependence. We see that it is a lot faster. Also the values for the other parameters are set
to the default “result” which is the parameter set of the best observed value so far. In the case of funny_func this is
close to 0 for all parameters.

_ = plot_objective(result, sample_source='result', n_points=10)

4.2. Plotting functions 81

scikit-optimize Documentation, Release 0.7.4

Modify the shown minimum

Here we try with setting the other parameters to something other than “result”. When dealing with categorical dimen-
sions we can’t use ‘expected_minimum’. Therefore we try with “expected_minimum_random” which is a naive way
of finding the minimum of the surrogate by only using random sampling. n_minimum_search sets the number of
random samples, which is used to find the minimum

_ = plot_objective(result, n_points=10, sample_source='expected_minimum_random',
minimum='expected_minimum_random', n_minimum_search=10000)

82 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Set a minimum location

Lastly we can also define these parameters ourselfs by parsing a list as the pars argument:

_ = plot_objective(result, n_points=10, sample_source=[15, 4, 7, 15, 'b', 'entropy',
→˓'e'],

minimum=[15, 4, 7, 15, 'b', 'entropy', 'e'])

4.2. Plotting functions 83

scikit-optimize Documentation, Release 0.7.4

Total running time of the script: (0 minutes 25.236 seconds)

Estimated memory usage: 34 MB

Note: Click here to download the full example code or to run this example in your browser via Binder

4.2.3 Visualizing optimization results

Tim Head, August 2016. Reformatted by Holger Nahrstaedt 2020

Bayesian optimization or sequential model-based optimization uses a surrogate model to model the expensive to
evaluate objective function func. It is this model that is used to determine at which points to evaluate the expensive
objective next.

84 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

To help understand why the optimization process is proceeding the way it is, it is useful to plot the location and order
of the points at which the objective is evaluated. If everything is working as expected, early samples will be spread
over the whole parameter space and later samples should cluster around the minimum.

The plots.plot_evaluations function helps with visualizing the location and order in which samples are
evaluated for objectives with an arbitrary number of dimensions.

The plots.plot_objective function plots the partial dependence of the objective, as represented by the surro-
gate model, for each dimension and as pairs of the input dimensions.

All of the minimizers implemented in skopt return an [OptimizeResult]() instance that can be inspected. Both
plots.plot_evaluations and plots.plot_objective are helpers that do just that

print(__doc__)
import numpy as np
np.random.seed(123)

import matplotlib.pyplot as plt

Toy models

We will use two different toy models to demonstrate how plots.plot_evaluations works.

The first model is the benchmarks.branin function which has two dimensions and three minima.

The second model is the hart6 function which has six dimension which makes it hard to visualize. This will show
off the utility of plots.plot_evaluations.

from skopt.benchmarks import branin as branin
from skopt.benchmarks import hart6 as hart6_

redefined `hart6` to allow adding arbitrary "noise" dimensions
def hart6(x):

return hart6_(x[:6])

Starting with branin

To start let’s take advantage of the fact that benchmarks.branin is a simple function which can be visualised in
two dimensions.

from matplotlib.colors import LogNorm

def plot_branin():
fig, ax = plt.subplots()

x1_values = np.linspace(-5, 10, 100)
x2_values = np.linspace(0, 15, 100)
x_ax, y_ax = np.meshgrid(x1_values, x2_values)
vals = np.c_[x_ax.ravel(), y_ax.ravel()]
fx = np.reshape([branin(val) for val in vals], (100, 100))

cm = ax.pcolormesh(x_ax, y_ax, fx,
norm=LogNorm(vmin=fx.min(),

vmax=fx.max()))

(continues on next page)

4.2. Plotting functions 85

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]])
ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14,

lw=0, label="Minima")

cb = fig.colorbar(cm)
cb.set_label("f(x)")

ax.legend(loc="best", numpoints=1)

ax.set_xlabel("X_0")
ax.set_xlim([-5, 10])
ax.set_ylabel("X_1")
ax.set_ylim([0, 15])

plot_branin()

Evaluating the objective function

Next we use an extra trees based minimizer to find one of the minima of the benchmarks.branin function. Then
we visualize at which points the objective is being evaluated using plots.plot_evaluations.

86 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

from functools import partial
from skopt.plots import plot_evaluations
from skopt import gp_minimize, forest_minimize, dummy_minimize

bounds = [(-5.0, 10.0), (0.0, 15.0)]
n_calls = 160

forest_res = forest_minimize(branin, bounds, n_calls=n_calls,
base_estimator="ET", random_state=4)

_ = plot_evaluations(forest_res, bins=10)

plots.plot_evaluations creates a grid of size n_dims by n_dims. The diagonal shows histograms for each
of the dimensions. In the lower triangle (just one plot in this case) a two dimensional scatter plot of all points is shown.
The order in which points were evaluated is encoded in the color of each point. Darker/purple colors correspond to
earlier samples and lighter/yellow colors correspond to later samples. A red point shows the location of the minimum
found by the optimization process.

You should be able to see that points start clustering around the location of the true miminum. The histograms show
that the objective is evaluated more often at locations near to one of the three minima.

Using plots.plot_objective we can visualise the one dimensional partial dependence of the surrogate model
for each dimension. The contour plot in the bottom left corner shows the two dimensional partial dependence. In this
case this is the same as simply plotting the objective as it only has two dimensions.

Partial dependence plots

Partial dependence plots were proposed by [Friedman (2001)]_ as a method for interpreting the importance of input
features used in gradient boosting machines. Given a function of 𝑘: variables 𝑦 = 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑘): the partial

4.2. Plotting functions 87

scikit-optimize Documentation, Release 0.7.4

dependence of f on the i-th variable x_i is calculated as: 𝜑 (𝑥𝑖) =
1
𝑁

∑︀𝑁
𝑗=0 𝑓 (𝑥1,𝑗 , 𝑥2,𝑗 , ..., 𝑥𝑖, ..., 𝑥𝑘,𝑗): with

the sum running over a set of N points drawn at random from the search space.

The idea is to visualize how the value of 𝑥𝑗 : influences the function 𝑓 : after averaging out the influence of all other
variables.

from skopt.plots import plot_objective

_ = plot_objective(forest_res)

The two dimensional partial dependence plot can look like the true objective but it does not have to. As points at
which the objective function is being evaluated are concentrated around the suspected minimum the surrogate model
sometimes is not a good representation of the objective far away from the minima.

Random sampling

Compare this to a minimizer which picks points at random. There is no structure visible in the order in which it
evaluates the objective. Because there is no model involved in the process of picking sample points at random, we can
not plot the partial dependence of the model.

dummy_res = dummy_minimize(branin, bounds, n_calls=n_calls, random_state=4)

_ = plot_evaluations(dummy_res, bins=10)

88 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

Working in six dimensions

Visualising what happens in two dimensions is easy, where plots.plot_evaluations and plots.
plot_objective start to be useful is when the number of dimensions grows. They take care of many of the
more mundane things needed to make good plots of all combinations of the dimensions.

The next example uses class:benchmarks.hart6 which has six dimensions and shows both plots.
plot_evaluations and plots.plot_objective.

bounds = [(0., 1.),] * 6

forest_res = forest_minimize(hart6, bounds, n_calls=n_calls,
base_estimator="ET", random_state=4)

_ = plot_evaluations(forest_res)
_ = plot_objective(forest_res, n_samples=40)

4.2. Plotting functions 89

scikit-optimize Documentation, Release 0.7.4

•

90 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

•

Going from 6 to 6+2 dimensions

To make things more interesting let’s add two dimension to the problem. As benchmarks.hart6 only depends
on six dimensions we know that for this problem the new dimensions will be “flat” or uninformative. This is clearly
visible in both the placement of samples and the partial dependence plots.

bounds = [(0., 1.),] * 8
n_calls = 200

forest_res = forest_minimize(hart6, bounds, n_calls=n_calls,
base_estimator="ET", random_state=4)

_ = plot_evaluations(forest_res)
_ = plot_objective(forest_res, n_samples=40)

(continues on next page)

4.2. Plotting functions 91

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

.. [Friedman (2001)] `doi:10.1214/aos/1013203451 section 8.2 <http://projecteuclid.
→˓org/euclid.aos/1013203451>`

•

92 Chapter 4. Examples

scikit-optimize Documentation, Release 0.7.4

•

Total running time of the script: (7 minutes 30.177 seconds)

Estimated memory usage: 88 MB

4.2. Plotting functions 93

scikit-optimize Documentation, Release 0.7.4

94 Chapter 4. Examples

CHAPTER

FIVE

API REFERENCE

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box func-
tions. It implements several methods for sequential model-based optimization. skopt is reusable in many contexts and
accessible.

5.1 skopt: module

5.1.1 Base classes

BayesSearchCV (estimator, search_spaces[, . . .]) Bayesian optimization over hyper parameters.
Optimizer(dimensions[, base_estimator, . . .]) Run bayesian optimisation loop.
Space(dimensions) Initialize a search space from given specifications.

skopt.BayesSearchCV

class skopt.BayesSearchCV(estimator, search_spaces, optimizer_kwargs=None, n_iter=50, scor-
ing=None, fit_params=None, n_jobs=1, n_points=1, iid=True,
refit=True, cv=None, verbose=0, pre_dispatch=’2*n_jobs’, ran-
dom_state=None, error_score=’raise’, return_train_score=False)

Bayesian optimization over hyper parameters.

BayesSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “de-
cision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
n_iter.

Parameters are presented as a list of skopt.space.Dimension objects.

Parameters

estimator [estimator object.] A object of that type is instantiated for each search point. This
object is assumed to implement the scikit-learn estimator api. Either estimator needs to
provide a score function, or scoring must be passed.

search_spaces [dict, list of dict or list of tuple containing] (dict, int). One of these cases: 1.
dictionary, where keys are parameter names (strings) and values are skopt.space.Dimension
instances (Real, Integer or Categorical) or any other valid value that defines skopt dimen-
sion (see skopt.Optimizer docs). Represents search space over parameters of the provided

95

scikit-optimize Documentation, Release 0.7.4

estimator. 2. list of dictionaries: a list of dictionaries, where every dictionary fits the de-
scription given in case 1 above. If a list of dictionary objects is given, then the search is
performed sequentially for every parameter space with maximum number of evaluations set
to self.n_iter. 3. list of (dict, int > 0): an extension of case 2 above, where first element of
every tuple is a dictionary representing some search subspace, similarly as in case 2, and
second element is a number of iterations that will be spent optimizing over this subspace.

n_iter [int, default=50] Number of parameter settings that are sampled. n_iter trades off runtime
vs quality of the solution. Consider increasing n_points if you want to try more parameter
settings in parallel.

optimizer_kwargs [dict, optional] Dict of arguments passed to Optimizer. For example,
{'base_estimator': 'RF'} would use a Random Forest surrogate instead of the
default Gaussian Process.

scoring [string, callable or None, default=None] A string (see model evaluation documentation)
or a scorer callable object / function with signature scorer(estimator, X, y). If
None, the score method of the estimator is used.

fit_params [dict, optional] Parameters to pass to the fit method.

n_jobs [int, default=1] Number of jobs to run in parallel. At maximum there are n_points
times cv jobs available during each iteration.

n_points [int, default=1] Number of parameter settings to sample in parallel. If this does not
align with n_iter, the last iteration will sample less points. See also ask()

pre_dispatch [int, or string, optional] Controls the number of jobs that get dispatched during
parallel execution. Reducing this number can be useful to avoid an explosion of memory
consumption when more jobs get dispatched than CPUs can process. This parameter can
be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid [boolean, default=True] If True, the data is assumed to be identically distributed across the
folds, and the loss minimized is the total loss per sample, and not the mean loss across the
folds.

cv [int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

• None, to use the default 3-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• An object to be used as a cross-validation generator.

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

refit [boolean, default=True] Refit the best estimator with the entire dataset. If “False”, it is
impossible to make predictions using this RandomizedSearchCV instance after fitting.

verbose [integer] Controls the verbosity: the higher, the more messages.

random_state [int or RandomState] Pseudo random number generator state used for random
uniform sampling from lists of possible values instead of scipy.stats distributions.

96 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

error_score [‘raise’ (default) or numeric] Value to assign to the score if an error occurs in
estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

return_train_score [boolean, default=False] If 'True', the cv_results_ attribute will in-
clude training scores.

Attributes

cv_results_ [dict of numpy (masked) ndarrays] A dict with keys as column headers and values
as columns, that can be imported into a pandas DataFrame.

For instance the below given table

param_kernel param_gamma split0_test_score . . . rank_test_score
‘rbf’ 0.1 0.8 . . . 2
‘rbf’ 0.2 0.9 . . . 1
‘rbf’ 0.3 0.7 . . . 1

will be represented by a cv_results_ dict of:

{
'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'],

mask = False),
'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask = False),
'split0_test_score' : [0.8, 0.9, 0.7],
'split1_test_score' : [0.82, 0.5, 0.7],
'mean_test_score' : [0.81, 0.7, 0.7],
'std_test_score' : [0.02, 0.2, 0.],
'rank_test_score' : [3, 1, 1],
'split0_train_score' : [0.8, 0.9, 0.7],
'split1_train_score' : [0.82, 0.5, 0.7],
'mean_train_score' : [0.81, 0.7, 0.7],
'std_train_score' : [0.03, 0.03, 0.04],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.007, 0.06, 0.04, 0.04],
'std_score_time' : [0.001, 0.002, 0.003, 0.005],
'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
}

NOTE that the key 'params' is used to store a list of parameter settings dict for all the
parameter candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

best_estimator_ [estimator] Estimator that was chosen by the search, i.e. estimator which gave
highest score (or smallest loss if specified) on the left out data. Not available if refit=False.

best_score_ [float] Score of best_estimator on the left out data.

best_params_ [dict] Parameter setting that gave the best results on the hold out data.

best_index_ [int] The index (of the cv_results_ arrays) which corresponds to the best can-
didate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives

5.1. skopt: module 97

scikit-optimize Documentation, Release 0.7.4

the parameter setting for the best model, that gives the highest mean score (search.
best_score_).

scorer_ [function] Scorer function used on the held out data to choose the best parameters for
the model.

n_splits_ [int] The number of cross-validation splits (folds/iterations).

See also:

GridSearchCV Does exhaustive search over a grid of parameters.

Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring param-
eter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs
times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the
dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch.
Then, the memory is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2
* n_jobs.

Examples

>>> from skopt import BayesSearchCV
>>> # parameter ranges are specified by one of below
>>> from skopt.space import Real, Categorical, Integer
>>>
>>> from sklearn.datasets import load_iris
>>> from sklearn.svm import SVC
>>> from sklearn.model_selection import train_test_split
>>>
>>> X, y = load_iris(True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... train_size=0.75,
... random_state=0)
>>>
>>> # log-uniform: understand as search over p = exp(x) by varying x
>>> opt = BayesSearchCV(
... SVC(),
... {
... 'C': Real(1e-6, 1e+6, prior='log-uniform'),
... 'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
... 'degree': Integer(1,8),
... 'kernel': Categorical(['linear', 'poly', 'rbf']),
... },
... n_iter=32,
... random_state=0
...)
>>>
>>> # executes bayesian optimization
>>> _ = opt.fit(X_train, y_train)
>>>
>>> # model can be saved, used for predictions or scoring

(continues on next page)

98 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

(continued from previous page)

>>> print(opt.score(X_test, y_test))
0.973...

Methods

decision_function(self, X) Call decision_function on the estimator with the best
found parameters.

fit(self, X[, y, groups, callback]) Run fit on the estimator with randomly drawn param-
eters.

get_params(self[, deep]) Get parameters for this estimator.
inverse_transform(self, Xt) Call inverse_transform on the estimator with the best

found params.
predict(self, X) Call predict on the estimator with the best found pa-

rameters.
predict_log_proba(self, X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(self, X) Call predict_proba on the estimator with the best

found parameters.
score(self, X[, y]) Returns the score on the given data, if the estimator

has been refit.
set_params(self, **params) Set the parameters of this estimator.
transform(self, X) Call transform on the estimator with the best found

parameters.

__init__(self, estimator, search_spaces, optimizer_kwargs=None, n_iter=50, scoring=None,
fit_params=None, n_jobs=1, n_points=1, iid=True, refit=True, cv=None, ver-
bose=0, pre_dispatch=’2*n_jobs’, random_state=None, error_score=’raise’, re-
turn_train_score=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(self, X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

fit(self, X, y=None, groups=None, callback=None)
Run fit on the estimator with randomly drawn parameters.

Parameters

X [array-like or sparse matrix, shape = [n_samples, n_features]] The training input samples.

y [array-like, shape = [n_samples] or [n_samples, n_output]] Target relative to X for classi-
fication or regression (class labels should be integers or strings).

groups [array-like, with shape (n_samples,), optional] Group labels for the samples used
while splitting the dataset into train/test set.

callback: [callable, list of callables, optional] If callable then callback(res) is called
after each parameter combination tested. If list of callables, then each callable in the list is
called.

5.1. skopt: module 99

scikit-optimize Documentation, Release 0.7.4

get_params(self, deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(self, Xt)
Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters

Xt [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict(self, X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_log_proba(self, X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_proba(self, X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

score(self, X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters

X [array-like of shape (n_samples, n_features)] Input data, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of shape (n_samples, n_output) or (n_samples,), optional] Target relative to X
for classification or regression; None for unsupervised learning.

Returns

100 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

score [float]

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property total_iterations
Count total iterations that will be taken to explore all subspaces with fit method.

Returns

max_iter: int, total number of iterations to explore

transform(self, X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

Examples using skopt.BayesSearchCV

• Scikit-learn hyperparameter search wrapper

skopt.Optimizer

class skopt.Optimizer(dimensions, base_estimator=’gp’, n_random_starts=None,
n_initial_points=10, acq_func=’gp_hedge’, acq_optimizer=’auto’, ran-
dom_state=None, model_queue_size=None, acq_func_kwargs=None,
acq_optimizer_kwargs=None)

Run bayesian optimisation loop.

An Optimizer represents the steps of a bayesian optimisation loop. To use it you need to provide your own
loop mechanism. The various optimisers provided by skopt use this class under the hood.

Use this class directly if you want to control the iterations of your bayesian optimisation loop.

Parameters

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

5.1. skopt: module 101

scikit-optimize Documentation, Release 0.7.4

base_estimator ["GP", "RF", "ET", "GBRT" or sklearn regressor,]

default=‘”GP”‘ Should inherit from sklearn.base.RegressorMixin. In addition the
predictmethod, should have an optional return_std argument, which returns std(Y
| x)` along with E[Y | x]. If base_estimator is one of [“GP”, “RF”, “ET”, “GBRT”],
a default surrogate model of the corresponding type is used corresponding to what is used
in the minimize functions.

n_random_starts [int, default=10] Deprecated since version use: n_initial_points in-
stead.

n_initial_points [int, default=10] Number of evaluations of func with initialization points
before approximating it with base_estimator. Points provided as x0 count as initial-
ization points. If len(x0) < n_initial_points additional points are sampled at random.

acq_func [string, default=‘”gp_hedge”‘] Function to minimize over the posterior distribution.
Can be either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "gp_hedge" Probabilistically choose one of the above three acquisition functions at
every iteration.

– The gains g_i are initialized to zero.

– At every iteration,

* Each acquisition function is optimised independently to propose an candidate
point X_i.

* Out of all these candidate points, the next point X_best is chosen by
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂𝑔𝑖)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that 𝑔𝑖− = 𝜇(𝑋𝑖)

• ‘”EIps” for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of ‘”EIps

acq_optimizer [string, "sampling" or "lbfgs", default=‘”auto”‘] Method to minimize the
acquistion function. The fit model is updated with the optimal value obtained by optimizing
acq_func with acq_optimizer.

• If set to "auto", then acq_optimizer is configured on the basis of the
base_estimator and the space searched over. If the space is Categorical or if the estimator
provided based on tree-models then this is set to be “sampling”‘.

• If set to "sampling", then acq_func is optimized by computing acq_func at
n_points randomly sampled points.

• If set to "lbfgs", then acq_func is optimized by

– Sampling n_restarts_optimizer points randomly.

– "lbfgs" is run for 20 iterations with these points as initial points to find local
minima.

102 Chapter 5. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html#sklearn.base.RegressorMixin

scikit-optimize Documentation, Release 0.7.4

– The optimal of these local minima is used to update the prior.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

acq_func_kwargs [dict] Additional arguments to be passed to the acquistion function.

acq_optimizer_kwargs [dict] Additional arguments to be passed to the acquistion optimizer.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Attributes

Xi [list] Points at which objective has been evaluated.

yi [scalar] Values of objective at corresponding points in Xi.

models [list] Regression models used to fit observations and compute acquisition function.

space [Space] An instance of skopt.space.Space. Stores parameter search space used to
sample points, bounds, and type of parameters.

Methods

ask(self[, n_points, strategy]) Query point or multiple points at which objective
should be evaluated.

copy(self[, random_state]) Create a shallow copy of an instance of the optimizer.
get_result(self) Returns the same result that would be returned by

opt.tell() but without calling tell
run(self, func[, n_iter]) Execute ask() + tell() n_iter times
tell(self, x, y[, fit]) Record an observation (or several) of the objective

function.
update_next(self) Updates the value returned by opt.ask().

__init__(self, dimensions, base_estimator=’gp’, n_random_starts=None, n_initial_points=10,
acq_func=’gp_hedge’, acq_optimizer=’auto’, random_state=None,
model_queue_size=None, acq_func_kwargs=None, acq_optimizer_kwargs=None)

Initialize self. See help(type(self)) for accurate signature.

ask(self, n_points=None, strategy=’cl_min’)
Query point or multiple points at which objective should be evaluated.

n_points [int or None, default=None] Number of points returned by the ask method. If the value is None,
a single point to evaluate is returned. Otherwise a list of points to evaluate is returned of size n_points.
This is useful if you can evaluate your objective in parallel, and thus obtain more objective function
evaluations per unit of time.

strategy [string, default=”cl_min”] Method to use to sample multiple points (see also n_points de-
scription). This parameter is ignored if n_points = None. Supported options are "cl_min",
"cl_mean" or "cl_max".

• If set to "cl_min", then constant liar strategy is used with lie objective value being mini-
mum of observed objective values. "cl_mean" and "cl_max" means mean and max of
values respectively. For details on this strategy see:

https://hal.archives-ouvertes.fr/hal-00732512/document

With this strategy a copy of optimizer is created, which is then asked for a point, and the point
is told to the copy of optimizer with some fake objective (lie), the next point is asked from

5.1. skopt: module 103

https://hal.archives-ouvertes.fr/hal-00732512/document

scikit-optimize Documentation, Release 0.7.4

copy, it is also told to the copy with fake objective and so on. The type of lie defines different
flavours of cl_x strategies.

copy(self, random_state=None)
Create a shallow copy of an instance of the optimizer.

Parameters

random_state [int, RandomState instance, or None (default)] Set the random state of the
copy.

get_result(self)
Returns the same result that would be returned by opt.tell() but without calling tell

Returns

res [OptimizeResult, scipy object] OptimizeResult instance with the required informa-
tion.

run(self, func, n_iter=1)
Execute ask() + tell() n_iter times

tell(self, x, y, fit=True)
Record an observation (or several) of the objective function.

Provide values of the objective function at points suggested by ask() or other points. By default a new
model will be fit to all observations. The new model is used to suggest the next point at which to evaluate
the objective. This point can be retrieved by calling ask().

To add observations without fitting a new model set fit to False.

To add multiple observations in a batch pass a list-of-lists for x and a list of scalars for y.

Parameters

x [list or list-of-lists] Point at which objective was evaluated.

y [scalar or list] Value of objective at x.

fit [bool, default=True] Fit a model to observed evaluations of the objective. A model will
only be fitted after n_initial_points points have been told to the optimizer irrespec-
tive of the value of fit.

update_next(self)
Updates the value returned by opt.ask(). Useful if a parameter was updated after ask was called.

Examples using skopt.Optimizer

• Parallel optimization

• Async optimization Loop

• Exploration vs exploitation

• Use different base estimators for optimization

skopt.Space

class skopt.Space(dimensions)
Initialize a search space from given specifications.

Parameters

104 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

dimensions [list, shape=(n_dims,)] List of search space dimensions. Each search dimension
can be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer dimensions.

Attributes

bounds The dimension bounds, in the original space.

is_categorical Space contains exclusively categorical dimensions

is_partly_categorical Space contains any categorical dimensions

is_real Returns true if all dimensions are Real

n_dims The dimensionality of the original space.

transformed_bounds The dimension bounds, in the warped space.

transformed_n_dims The dimensionality of the warped space.

Methods

distance(self, point_a, point_b) Compute distance between two points in this space.
from_yaml(yml_path[, namespace]) Create Space from yaml configuration file
inverse_transform(self, Xt) Inverse transform samples from the warped space

back to the
rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, X) Transform samples from the original space into a

warped space.

__init__(self, dimensions)
Initialize self. See help(type(self)) for accurate signature.

property bounds
The dimension bounds, in the original space.

distance(self, point_a, point_b)
Compute distance between two points in this space.

Parameters

point_a [array] First point.

point_b [array] Second point.

classmethod from_yaml(yml_path, namespace=None)
Create Space from yaml configuration file

Parameters

yml_path [str] Full path to yaml configuration file, example YaML below: Space:

5.1. skopt: module 105

scikit-optimize Documentation, Release 0.7.4

• Integer: low: -5 high: 5

• Categorical: categories: - a - b

• Real: low: 1.0 high: 5.0 prior: log-uniform

namespace [str, default=None]

Namespace within configuration file to use, will use first namespace if not provided

Returns

space [Space] Instantiated Space object

inverse_transform(self, Xt)

Inverse transform samples from the warped space back to the original space.

Parameters

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The samples to inverse trans-
form.

Returns

X [list of lists, shape=(n_samples, n_dims)] The original samples.

property is_categorical
Space contains exclusively categorical dimensions

property is_partly_categorical
Space contains any categorical dimensions

property is_real
Returns true if all dimensions are Real

property n_dims
The dimensionality of the original space.

rvs(self, n_samples=1, random_state=None)
Draw random samples.

The samples are in the original space. They need to be transformed before being passed to a model or
minimizer by space.transform().

Parameters

n_samples [int, default=1] Number of samples to be drawn from the space.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Returns

points [list of lists, shape=(n_points, n_dims)] Points sampled from the space.

transform(self, X)
Transform samples from the original space into a warped space.

Note: this transformation is expected to be used to project samples into a suitable space for numeri-
cal optimization.

Parameters

X [list of lists, shape=(n_samples, n_dims)] The samples to transform.

106 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Returns

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The transformed samples.

property transformed_bounds
The dimension bounds, in the warped space.

property transformed_n_dims
The dimensionality of the warped space.

5.1.2 Functions

dummy_minimize(func, dimensions[, n_calls, . . .]) Random search by uniform sampling within the given
bounds.

dump(res, filename[, store_objective]) Store an skopt optimization result into a file.
expected_minimum(res[, n_random_starts, . . .]) Compute the minimum over the predictions of the last

surrogate model.
expected_minimum_random_sampling(res[,
. . .])

Minimum search by doing naive random sampling, Re-
turns the parameters that gave the minimum function
value.

forest_minimize(func, dimensions[, . . .]) Sequential optimisation using decision trees.
gbrt_minimize(func, dimensions[, . . .]) Sequential optimization using gradient boosted trees.
gp_minimize(func, dimensions[, . . .]) Bayesian optimization using Gaussian Processes.
load(filename, **kwargs) Reconstruct a skopt optimization result from a file per-

sisted with skopt.dump.

skopt.dummy_minimize

skopt.dummy_minimize(func, dimensions, n_calls=100, x0=None, y0=None, random_state=None, ver-
bose=False, callback=None, model_queue_size=None)

Random search by uniform sampling within the given bounds.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args as a decorator on your objective function, in order to call it
directly with the named arguments. See use_named_args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, prior) tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

n_calls [int, default=100] Number of calls to func to find the minimum.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

5.1. skopt: module 107

scikit-optimize Documentation, Release 0.7.4

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, list of callables, optional] If callable then callback(res) is called after
each call to func. If list of callables, then each callable in the list is called.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimisation space.

• specs [dict]: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

Examples using skopt.dummy_minimize

• Comparing surrogate models

• Visualizing optimization results

skopt.dump

skopt.dump(res, filename, store_objective=True, **kwargs)
Store an skopt optimization result into a file.

Parameters

res [OptimizeResult, scipy object] Optimization result object to be stored.

filename [string or pathlib.Path] The path of the file in which it is to be stored. The
compression method corresponding to one of the supported filename extensions (‘.z’, ‘.gz’,
‘.bz2’, ‘.xz’ or ‘.lzma’) will be used automatically.

108 Chapter 5. API Reference

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

store_objective [boolean, default=True] Whether the objective function should be
stored. Set store_objective to False if your objective function (.
specs['args']['func']) is unserializable (i.e. if an exception is raised when
trying to serialize the optimization result).

Notice that if store_objective is set to False, a deep copy of the optimization result
is created, potentially leading to performance problems if res is very large. If the objective
function is not critical, one can delete it before calling skopt.dump() and thus avoid
deep copying of res.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib.
dump.

Examples using skopt.dump

• Store and load skopt optimization results

skopt.expected_minimum

skopt.expected_minimum(res, n_random_starts=20, random_state=None)
Compute the minimum over the predictions of the last surrogate model. Uses
expected_minimum_random_sampling with ‘n_random_starts‘=100000, when the space contains any
categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true
objective function.

Parameters

res [OptimizeResult, scipy object] The optimization result returned by a skopt mini-
mizer.

n_random_starts [int, default=20] The number of random starts for the minimization of the
surrogate model.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

skopt.expected_minimum_random_sampling

skopt.expected_minimum_random_sampling(res, n_random_starts=100000, ran-
dom_state=None)

Minimum search by doing naive random sampling, Returns the parameters that gave the minimum function
value. Can be used when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true
objective function.

5.1. skopt: module 109

scikit-optimize Documentation, Release 0.7.4

Parameters

res [OptimizeResult, scipy object] The optimization result returned by a skopt mini-
mizer.

n_random_starts [int, default=100000] The number of random starts for the minimization of
the surrogate model.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

skopt.forest_minimize

skopt.forest_minimize(func, dimensions, base_estimator=’ET’, n_calls=100, n_random_starts=10,
acq_func=’EI’, x0=None, y0=None, random_state=None, verbose=False,
callback=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1,
model_queue_size=None)

Sequential optimisation using decision trees.

A tree based regression model is used to model the expensive to evaluate function func. The model is improved
by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func
with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args() as a decorator on your objective function, in order to call
it directly with the named arguments. See skopt.utils.use_named_args()

for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, prior) tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

base_estimator [string or Regressor, default=”ET”] The regressor to use as surrogate
model. Can be either

110 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

• "RF" for random forest regressor

• "ET" for extra trees regressor

• instance of regressor with support for return_std in its predict method

The predefined models are initialized with good defaults. If you want to adjust the model
parameters pass your own instance of a regressor which returns the mean and standard de-
viation when making predictions.

n_calls [int, default=100] Number of calls to func.

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=”LCB”] Function to minimize over the forest posterior. Can be either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of "EIps"

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, optional] If provided, then callback(res) is called after call to func.

n_points [int, default=10000] Number of points to sample when minimizing the acquisition
function.

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

n_jobs [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then
the number of jobs is set to the number of cores.

5.1. skopt: module 111

scikit-optimize Documentation, Release 0.7.4

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.gp_minimize, skopt.dummy_minimize

Examples using skopt.forest_minimize

• Comparing surrogate models

• Partial Dependence Plots

• Visualizing optimization results

skopt.gbrt_minimize

skopt.gbrt_minimize(func, dimensions, base_estimator=None, n_calls=100, n_random_starts=10,
acq_func=’EI’, acq_optimizer=’auto’, x0=None, y0=None, ran-
dom_state=None, verbose=False, callback=None, n_points=10000, xi=0.01,
kappa=1.96, n_jobs=1, model_queue_size=None)

Sequential optimization using gradient boosted trees.

Gradient boosted regression trees are used to model the (very) expensive to evaluate function func. The
model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the
minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

112 Chapter 5. API Reference

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args as a decorator on your objective function, in order to call it
directly with the named arguments. See use_named_args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

base_estimator [GradientBoostingQuantileRegressor] The regressor to use as
surrogate model

n_calls [int, default=100] Number of calls to func.

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=‘”LCB”‘] Function to minimize over the forest posterior. Can be
either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken.

• "PIps" for negated probability of improvement per second.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, optional] If provided, then callback(res) is called after call to func.

n_points [int, default=10000] Number of points to sample when minimizing the acquisition
function.

5.1. skopt: module 113

scikit-optimize Documentation, Release 0.7.4

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

n_jobs [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then
the number of jobs is set to the number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

skopt.gp_minimize

skopt.gp_minimize(func, dimensions, base_estimator=None, n_calls=100, n_random_starts=10,
acq_func=’gp_hedge’, acq_optimizer=’auto’, x0=None, y0=None, ran-
dom_state=None, verbose=False, callback=None, n_points=10000,
n_restarts_optimizer=5, xi=0.01, kappa=1.96, noise=’gaussian’, n_jobs=1,
model_queue_size=None)

Bayesian optimization using Gaussian Processes.

If every function evaluation is expensive, for instance when the parameters are the hyperparameters of a neural
network and the function evaluation is the mean cross-validation score across ten folds, optimizing the hyperpa-
rameters by standard optimization routines would take for ever!

The idea is to approximate the function using a Gaussian process. In other words the function values are assumed
to follow a multivariate gaussian. The covariance of the function values are given by a GP kernel between the
parameters. Then a smart choice to choose the next parameter to evaluate can be made by the acquisition
function over the Gaussian prior which is much quicker to evaluate.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

Parameters

114 Chapter 5. API Reference

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args() as a decorator on your objective function, in order to call
it directly with the named arguments. See use_named_args for an example.

dimensions [[list, shape (n_dims,)] List of search space dimensions. Each search dimension
can be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer

dimensions.

base_estimator [a Gaussian process estimator] The Gaussian process estimator to use for opti-
mization. By default, a Matern kernel is used with the following hyperparameters tuned.

• All the length scales of the Matern kernel.

• The covariance amplitude that each element is multiplied with.

• Noise that is added to the matern kernel. The noise is assumed to be iid gaussian.

n_calls [int, default=100] Number of calls to func.

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=‘”gp_hedge”‘] Function to minimize over the gaussian prior. Can be
either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "gp_hedge" Probabilistically choose one of the above three acquisition functions
at every iteration. The weightage given to these gains can be set by 𝜂 through
acq_func_kwargs.

– The gains g_i are initialized to zero.

– At every iteration,

* Each acquisition function is optimised independently to propose an candidate point
X_i.

* Out of all these candidate points, the next point X_best is chosen by 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂𝑔𝑖)

* After fitting the surrogate model with (X_best, y_best), the gains are updated
such that 𝑔𝑖− = 𝜇(𝑋𝑖)

5.1. skopt: module 115

scikit-optimize Documentation, Release 0.7.4

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of ‘”EIps

acq_optimizer [string, "sampling" or "lbfgs", default=‘”lbfgs”‘] Method to minimize
the acquistion function. The fit model is updated with the optimal value obtained by opti-
mizing acq_func with acq_optimizer.

The acq_func is computed at n_points sampled randomly.

• If set to "auto", then acq_optimizer is configured on the basis of the space
searched over. If the space is Categorical then this is set to be “sampling”‘.

• If set to "sampling", then the point among these n_points where the acq_func is
minimum is the next candidate minimum.

• If set to "lbfgs", then

– The n_restarts_optimizer no. of points which the acquisition function is least
are taken as start points.

– "lbfgs" is run for 20 iterations with these points as initial points to find local minima.

– The optimal of these local minima is used to update the prior.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, list of callables, optional] If callable then callback(res) is called after
each call to func. If list of callables, then each callable in the list is called.

n_points [int, default=10000] Number of points to sample to determine the next “best” point.
Useless if acq_optimizer is set to "lbfgs".

n_restarts_optimizer [int, default=5] The number of restarts of the optimizer when
acq_optimizer is "lbfgs".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

116 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

noise [float, default=”gaussian”]

• Use noise=”gaussian” if the objective returns noisy observations. The noise of each ob-
servation is assumed to be iid with mean zero and a fixed variance.

• If the variance is known before-hand, this can be set directly to the variance of the noise.

• Set this to a value close to zero (1e-10) if the function is noise-free. Setting to zero might
cause stability issues.

n_jobs [int, default=1] Number of cores to run in parallel while running the lbfgs optimizations
over the acquisition function. Valid only when acq_optimizer is set to “lbfgs.” Defaults
to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.forest_minimize, skopt.dummy_minimize

Examples using skopt.gp_minimize

• Tuning a scikit-learn estimator with skopt

• Store and load skopt optimization results

• Comparing surrogate models

• Interruptible optimization runs with checkpoints

• Bayesian optimization with skopt

• Partial Dependence Plots with categorical values

skopt.load

skopt.load(filename, **kwargs)
Reconstruct a skopt optimization result from a file persisted with skopt.dump.

5.1. skopt: module 117

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

Note: Notice that the loaded optimization result can be missing the objective function (.
specs['args']['func']) if skopt.dump was called with store_objective=False.

Parameters

filename [string or pathlib.Path] The path of the file from which to load the optimization
result.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib.
load.

Returns

res [OptimizeResult, scipy object] Reconstructed OptimizeResult instance.

Examples using skopt.load

• Store and load skopt optimization results

• Interruptible optimization runs with checkpoints

5.2 skopt.acquisition: Acquisition

User guide: See the Acquisition section for further details.

acquisition.gaussian_acquisition_1D(X,
model)

A wrapper around the acquisition function that is called
by fmin_l_bfgs_b.

acquisition.gaussian_ei(X, model[, y_opt,
. . .])

Use the expected improvement to calculate the acquisi-
tion values.

acquisition.gaussian_lcb(X, model[, kappa,
. . .])

Use the lower confidence bound to estimate the acquisi-
tion values.

acquisition.gaussian_pi(X, model[, y_opt,
. . .])

Use the probability of improvement to calculate the ac-
quisition values.

5.2.1 skopt.acquisition.gaussian_acquisition_1D

skopt.acquisition.gaussian_acquisition_1D(X, model, y_opt=None, acq_func=’LCB’,
acq_func_kwargs=None, return_grad=True)

A wrapper around the acquisition function that is called by fmin_l_bfgs_b.

This is because lbfgs allows only 1-D input.

5.2.2 skopt.acquisition.gaussian_ei

skopt.acquisition.gaussian_ei(X, model, y_opt=0.0, xi=0.01, return_grad=False)
Use the expected improvement to calculate the acquisition values.

The conditional probability P(y=f(x) | x) form a gaussian with a certain mean and standard deviation
approximated by the model.

118 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

The EI condition is derived by computing E[u(f(x))] where u(f(x)) = 0, if f(x) > y_opt and
u(f(x)) = y_opt - f(x), if‘‘f(x) < y_opt‘‘.

This solves one of the issues of the PI condition by giving a reward proportional to the amount of improvement
got.

Note that the value returned by this function should be maximized to obtain the X with maximum improvement.

Parameters

X [array-like, shape=(n_samples, n_features)] Values where the acquisition function should be
computed.

model [sklearn estimator that implements predict with return_std] The fit estimator that
approximates the function through the method predict. It should have a return_std
parameter that returns the standard deviation.

y_opt [float, default 0] Previous minimum value which we would like to improve upon.

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Useful only when method is set to “EI”

return_grad [boolean, optional] Whether or not to return the grad. Implemented only for the
case where X is a single sample.

Returns

values [array-like, shape=(X.shape[0],)] Acquisition function values computed at X.

Examples using skopt.acquisition.gaussian_ei

• Async optimization Loop

• Exploration vs exploitation

• Bayesian optimization with skopt

• Use different base estimators for optimization

5.2.3 skopt.acquisition.gaussian_lcb

skopt.acquisition.gaussian_lcb(X, model, kappa=1.96, return_grad=False)
Use the lower confidence bound to estimate the acquisition values.

The trade-off between exploitation and exploration is left to be controlled by the user through the parameter
kappa.

Parameters

X [array-like, shape (n_samples, n_features)] Values where the acquisition function should be
computed.

model [sklearn estimator that implements predict with return_std] The fit estimator that
approximates the function through the method predict. It should have a return_std
parameter that returns the standard deviation.

kappa [float, default 1.96 or ‘inf’] Controls how much of the variance in the predicted values
should be taken into account. If set to be very high, then we are favouring exploration over
exploitation and vice versa. If set to ‘inf’, the acquisition function will only use the variance
which is useful in a pure exploration setting. Useless if method is set to “LCB”.

5.2. skopt.acquisition: Acquisition 119

scikit-optimize Documentation, Release 0.7.4

return_grad [boolean, optional] Whether or not to return the grad. Implemented only for the
case where X is a single sample.

Returns

values [array-like, shape (X.shape[0],)] Acquisition function values computed at X.

grad [array-like, shape (n_samples, n_features)] Gradient at X.

5.2.4 skopt.acquisition.gaussian_pi

skopt.acquisition.gaussian_pi(X, model, y_opt=0.0, xi=0.01, return_grad=False)
Use the probability of improvement to calculate the acquisition values.

The conditional probability P(y=f(x) | x) form a gaussian with a certain mean and standard deviation
approximated by the model.

The PI condition is derived by computing E[u(f(x))] where u(f(x)) = 1, if f(x) < y_opt and
u(f(x)) = 0, if‘‘f(x) > y_opt‘‘.

This means that the PI condition does not care about how “better” the predictions are than the previous values,
since it gives an equal reward to all of them.

Note that the value returned by this function should be maximized to obtain the X with maximum improvement.

Parameters

X [array-like, shape=(n_samples, n_features)] Values where the acquisition function should be
computed.

model [sklearn estimator that implements predict with return_std] The fit estimator that
approximates the function through the method predict. It should have a return_std
parameter that returns the standard deviation.

y_opt [float, default 0] Previous minimum value which we would like to improve upon.

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Useful only when method is set to “EI”

return_grad [boolean, optional] Whether or not to return the grad. Implemented only for the
case where X is a single sample.

Returns

values [[array-like, shape=(X.shape[0],)] Acquisition function values computed at X.

5.3 skopt.benchmarks: A collection of benchmark problems.

A collection of benchmark problems.

User guide: See the benchmarks section for further details.

5.3.1 Functions

benchmarks.bench1(x) A benchmark function for test purposes.
benchmarks.bench1_with_time(x) Same as bench1 but returns the computation time (con-

stant).
Continued on next page

120 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Table 7 – continued from previous page
benchmarks.bench2(x) A benchmark function for test purposes.
benchmarks.bench3(x) A benchmark function for test purposes.
benchmarks.bench4(x) A benchmark function for test purposes.
benchmarks.bench5(x) A benchmark function for test purposes.
benchmarks.branin(x[, a, b, c, r, s, t]) Branin-Hoo function is defined on the square 𝑥1 ∈

[−5, 10], 𝑥2 ∈ [0, 15].
benchmarks.hart6([P, A]) The six dimensional Hartmann function is defined on

the unit hypercube.

skopt.benchmarks.bench1

skopt.benchmarks.bench1(x)
A benchmark function for test purposes.

f(x) = x ** 2

It has a single minima with f(x*) = 0 at x* = 0.

skopt.benchmarks.bench1_with_time

skopt.benchmarks.bench1_with_time(x)
Same as bench1 but returns the computation time (constant).

skopt.benchmarks.bench2

skopt.benchmarks.bench2(x)
A benchmark function for test purposes.

f(x) = x ** 2 if x < 0 (x-5) ** 2 - 5 otherwise.

It has a global minima with f(x*) = -5 at x* = 5.

skopt.benchmarks.bench3

skopt.benchmarks.bench3(x)
A benchmark function for test purposes.

f(x) = sin(5*x) * (1 - tanh(x ** 2))

It has a global minima with f(x*) ~= -0.9 at x* ~= -0.3.

skopt.benchmarks.bench4

skopt.benchmarks.bench4(x)
A benchmark function for test purposes.

f(x) = float(x) ** 2

where x is a string. It has a single minima with f(x*) = 0 at x* = “0”. This benchmark is used for checking
support of categorical variables.

5.3. skopt.benchmarks: A collection of benchmark problems. 121

scikit-optimize Documentation, Release 0.7.4

skopt.benchmarks.bench5

skopt.benchmarks.bench5(x)
A benchmark function for test purposes.

f(x) = float(x[0]) ** 2 + x[1] ** 2

where x is a string. It has a single minima with f(x) = 0 at x[0] = “0” and x[1] = “0” This benchmark is used for
checking support of mixed spaces.

skopt.benchmarks.branin

skopt.benchmarks.branin(x, a=1, b=0.12918450914398066, c=1.5915494309189535, r=6, s=10,
t=0.039788735772973836)

Branin-Hoo function is defined on the square 𝑥1 ∈ [−5, 10], 𝑥2 ∈ [0, 15].

It has three minima with f(x*) = 0.397887 at x* = (-pi, 12.275), (+pi, 2.275), and (9.42478, 2.475).

More details: <http://www.sfu.ca/~ssurjano/branin.html>

Examples using skopt.benchmarks.branin

• Parallel optimization

• Comparing surrogate models

• Visualizing optimization results

skopt.benchmarks.hart6

hart6(x, alpha=array([1. , 1.2, 3. , 3.2]), P=array([[0.1312, 0.1696, 0.5569, 0.0124, 0.8283, 0.5886],
[0.2329, 0.4135, 0.8307, 0.3736, 0.1004, 0.9991],
[0.2348, 0.1451, 0.3522, 0.2883, 0.3047, 0.665],
[0.4047, 0.8828, 0.8732, 0.5743, 0.1091, 0.0381]]), A=array([[10. , 3. , 17. , 3.5 , 1.7 , 8.],
[0.05, 10. , 17. , 0.1 , 8. , 14.],
[3. , 3.5 , 1.7 , 10. , 17. , 8.],
[17. , 8. , 0.05, 10. , 0.1 , 14.]]))

The six dimensional Hartmann function is defined on the unit hypercube.

It has six local minima and one global minimum f(x*) = -3.32237 at x* = (0.20169, 0.15001, 0.476874,
0.275332, 0.311652, 0.6573).

More details: <http://www.sfu.ca/~ssurjano/hart6.html>

Examples using skopt.benchmarks.hart6

• Visualizing optimization results

5.4 skopt.callbacks: Callbacks

Monitor and influence the optimization procedure via callbacks.

Callbacks are callables which are invoked after each iteration of the optimizer and are passed the results “so far”.
Callbacks can monitor progress, or stop the optimization early by returning True.

122 Chapter 5. API Reference

http://www.sfu.ca/~ssurjano/branin.html
http://www.sfu.ca/~ssurjano/hart6.html

scikit-optimize Documentation, Release 0.7.4

User guide: See the Callbacks section for further details.

callbacks.CheckpointSaver(checkpoint_path,
. . .)

Save current state after each iteration with skopt.
dump.

callbacks.DeadlineStopper(total_time) Stop the optimization before running out of a fixed bud-
get of time.

callbacks.DeltaXStopper(delta) Stop the optimization when |x1 - x2| < delta
callbacks.DeltaYStopper(delta[, n_best]) Stop the optimization if the n_best minima are within

delta
callbacks.EarlyStopper Decide to continue or not given the results so far.
callbacks.TimerCallback() Log the elapsed time between each iteration of the min-

imization loop.
callbacks.VerboseCallback(n_total[, n_init,
. . .])

Callback to control the verbosity.

5.4.1 skopt.callbacks.CheckpointSaver

class skopt.callbacks.CheckpointSaver(checkpoint_path, **dump_options)
Save current state after each iteration with skopt.dump.

Parameters

checkpoint_path [string] location where checkpoint will be saved to;

dump_options [string] options to pass on to skopt.dump, like compress=9

Examples

>>> import skopt
>>> def obj_fun(x):
... return x[0]**2
>>> checkpoint_callback = skopt.callbacks.CheckpointSaver("./result.pkl")
>>> skopt.gp_minimize(obj_fun, [(-2, 2)], n_calls=10,
... callback=[checkpoint_callback]) # doctest: +SKIP

Methods

__call__(self, res)
Parameters

__init__(self, checkpoint_path, **dump_options)
Initialize self. See help(type(self)) for accurate signature.

Examples using skopt.callbacks.CheckpointSaver

• Interruptible optimization runs with checkpoints

5.4. skopt.callbacks: Callbacks 123

scikit-optimize Documentation, Release 0.7.4

5.4.2 skopt.callbacks.DeadlineStopper

class skopt.callbacks.DeadlineStopper(total_time)
Stop the optimization before running out of a fixed budget of time.

Parameters

total_time [float] fixed budget of time (seconds) that the optimization must finish within.

Attributes

iter_time [list, shape (n_iter,)] iter_time[i-1] gives the time taken to complete iteration
i

Methods

__call__(self, result)
Parameters

__init__(self, total_time)
Initialize self. See help(type(self)) for accurate signature.

5.4.3 skopt.callbacks.DeltaXStopper

class skopt.callbacks.DeltaXStopper(delta)
Stop the optimization when |x1 - x2| < delta

If the last two positions at which the objective has been evaluated are less than delta apart stop the optimization
procedure.

Methods

__call__(self, result)
Parameters

__init__(self, delta)
Initialize self. See help(type(self)) for accurate signature.

5.4.4 skopt.callbacks.DeltaYStopper

class skopt.callbacks.DeltaYStopper(delta, n_best=5)
Stop the optimization if the n_best minima are within delta

Stop the optimizer if the absolute difference between the n_best objective values is less than delta.

Methods

124 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

__call__(self, result)
Parameters

__init__(self, delta, n_best=5)
Initialize self. See help(type(self)) for accurate signature.

5.4.5 skopt.callbacks.EarlyStopper

class skopt.callbacks.EarlyStopper
Decide to continue or not given the results so far.

The optimization procedure will be stopped if the callback returns True.

Methods

__call__(self, result)
Parameters

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

5.4.6 skopt.callbacks.TimerCallback

class skopt.callbacks.TimerCallback
Log the elapsed time between each iteration of the minimization loop.

The time for each iteration is stored in the iter_time attribute which you can inspect after the minimization
has completed.

Attributes

iter_time [list, shape (n_iter,)] iter_time[i-1] gives the time taken to complete iteration
i

Methods

__call__(self, res)
Parameters

__init__(self)
Initialize self. See help(type(self)) for accurate signature.

5.4.7 skopt.callbacks.VerboseCallback

class skopt.callbacks.VerboseCallback(n_total, n_init=0, n_random=0)
Callback to control the verbosity.

5.4. skopt.callbacks: Callbacks 125

scikit-optimize Documentation, Release 0.7.4

Parameters

n_init [int, optional] Number of points provided by the user which are yet to be evaluated. This
is equal to len(x0) when y0 is None

n_random [int, optional] Number of points randomly chosen.

n_total [int] Total number of func calls.

Attributes

iter_no [int] Number of iterations of the optimization routine.

Methods

__call__(self, res)
Parameters

__init__(self, n_total, n_init=0, n_random=0)
Initialize self. See help(type(self)) for accurate signature.

5.5 skopt.learning: Machine learning extensions for model-based
optimization.

Machine learning extensions for model-based optimization.

User guide: See the learning section for further details.

learning.ExtraTreesRegressor([n_estimators,
. . .])

ExtraTreesRegressor that supports conditional standard
deviation.

learning.GaussianProcessRegressor([kernel,
. . .])

GaussianProcessRegressor that allows noise tunability.

learning.GradientBoostingQuantileRegressor([. . .])Predict several quantiles with one estimator.
learning.RandomForestRegressor([. . .]) RandomForestRegressor that supports conditional std

computation.

5.5.1 skopt.learning.ExtraTreesRegressor

class skopt.learning.ExtraTreesRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, boot-
strap=False, oob_score=False, n_jobs=1, ran-
dom_state=None, verbose=0, warm_start=False,
min_variance=0.0)

ExtraTreesRegressor that supports conditional standard deviation.

Parameters

n_estimators [integer, optional (default=10)] The number of trees in the forest.

126 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

criterion [string, optional (default=”mse”)] The function to measure the quality of a split. Sup-
ported criteria are “mse” for the mean squared error, which is equal to variance reduction as
feature selection criterion, and “mae” for the mean absolute error.

max_features [int, float, string or None, optional (default=”auto”)] The number of features to
consider when looking for the best split: - If int, then consider max_features features at
each split. - If float, then max_features is a percentage and

int(max_features * n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_depth [integer or None, optional (default=None)] The maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min_samples_split samples.

min_samples_split [int, float, optional (default=2)] The minimum number of samples required
to split an internal node: - If int, then consider min_samples_split as the minimum
number. - If float, then min_samples_split is a percentage and

ceil(min_samples_split * n_samples) are the minimum number of sam-
ples for each split.

min_samples_leaf [int, float, optional (default=1)] The minimum number of samples required
to be at a leaf node: - If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a percentage and

ceil(min_samples_leaf * n_samples) are the minimum number of sam-
ples for each node.

min_weight_fraction_leaf [float, optional (default=0.)] The minimum weighted fraction of the
sum total of weights (of all the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.

max_leaf_nodes [int or None, optional (default=None)] Grow trees with max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then
unlimited number of leaf nodes.

min_impurity_decrease [float, optional (default=0.)] A node will be split if this split induces a
decrease of the impurity greater than or equal to this value. The weighted impurity decrease
equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in the
right child. N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight
is passed.

bootstrap [boolean, optional (default=True)] Whether bootstrap samples are used when build-
ing trees.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 127

scikit-optimize Documentation, Release 0.7.4

oob_score [bool, optional (default=False)] whether to use out-of-bag samples to estimate the
R^2 on unseen data.

n_jobs [integer, optional (default=1)] The number of jobs to run in parallel for both fit and
predict. If -1, then the number of jobs is set to the number of cores.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

verbose [int, optional (default=0)] Controls the verbosity of the tree building process.

warm_start [bool, optional (default=False)] When set to True, reuse the solution of the pre-
vious call to fit and add more estimators to the ensemble, otherwise, just fit a whole new
forest.

Attributes

estimators_ [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

feature_importances_ [array of shape = [n_features]] Return the feature importances
(the higher, the more important the feature).

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ [array of shape = [n_samples]] Prediction computed with out-of-bag estimate
on the training set.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by set-
ting those parameter values. The features are always randomly permuted at each split. Therefore, the best found
split may vary, even with the same training data, max_features=n_features and bootstrap=False,
if the improvement of the criterion is identical for several splits enumerated during the search of the best split.
To obtain a deterministic behaviour during fitting, random_state has to be fixed.

References

[R8d4c5fa7c0c3-1]

Methods

apply(self, X) Apply trees in the forest to X, return leaf indices.
decision_path(self, X) Return the decision path in the forest.
fit(self, X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params(self[, deep]) Get parameters for this estimator.
predict(self, X[, return_std]) Predict continuous output for X.

Continued on next page

128 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Table 17 – continued from previous page
score(self, X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(self, **params) Set the parameters of this estimator.

__init__(self, n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=False, oob_score=False,
n_jobs=1, random_state=None, verbose=0, warm_start=False, min_variance=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(self, X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [array_like, shape = [n_samples, n_estimators]] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(self, X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse csr array, shape = [n_samples, n_nodes]] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes.

n_nodes_ptr [array of size (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns

feature_importances_ [array, shape = [n_features]] The values of this array sum to 1, unless
all trees are single node trees consisting of only the root node, in which case it will be an
array of zeros.

fit(self, X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [array-like or sparse matrix of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 129

scikit-optimize Documentation, Release 0.7.4

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(self, deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(self, X, return_std=False)
Predict continuous output for X.

Parameters

X [array-like of shape=(n_samples, n_features)] Input data.

return_std [boolean] Whether or not to return the standard deviation.

Returns

predictions [array-like of shape=(n_samples,)] Predicted values for X. If criterion is set to
“mse”, then predictions[i] ~= mean(y | X[i]).

std [array-like of shape=(n_samples,)] Standard deviation of y at X. If criterion is set to
“mse”, then std[i] ~= std(y | X[i]).

score(self, X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

130 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average'
from version 0.23 to keep consistent with r2_score(). This will influence the score method of
all the multioutput regressors (except for MultiOutputRegressor). To specify the default value
manually and avoid the warning, please either call r2_score() directly or make a custom scorer with
make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

5.5.2 skopt.learning.GaussianProcessRegressor

class skopt.learning.GaussianProcessRegressor(kernel=None, alpha=1e-10,
optimizer=’fmin_l_bfgs_b’,
n_restarts_optimizer=0, normal-
ize_y=False, copy_X_train=True,
random_state=None, noise=None)

GaussianProcessRegressor that allows noise tunability.

The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Ras-
mussen and Williams.

In addition to standard scikit-learn estimator API, GaussianProcessRegressor:

• allows prediction without prior fitting (based on the GP prior);

• provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or pos-
terior) at given inputs;

• exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting
hyperparameters, e.g., via Markov chain Monte Carlo.

Parameters

kernel [kernel object] The kernel specifying the covariance function of the GP. If None is
passed, the kernel “1.0 * RBF(1.0)” is used as default. Note that the kernel’s hyperpa-
rameters are optimized during fitting.

alpha [float or array-like, optional (default: 1e-10)] Value added to the diagonal of the kernel
matrix during fitting. Larger values correspond to increased noise level in the observations
and reduce potential numerical issue during fitting. If an array is passed, it must have the
same number of entries as the data used for fitting and is used as datapoint-dependent noise
level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify
the noise level directly as a parameter is mainly for convenience and for consistency with
Ridge.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 131

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer

scikit-optimize Documentation, Release 0.7.4

optimizer [string or callable, optional (default: “fmin_l_bfgs_b”)] Can either be one of the
internally supported optimizers for optimizing the kernel’s parameters, specified by a string,
or an externally defined optimizer passed as a callable. If a callable is passed, it must have
the signature:

def optimizer(obj_func, initial_theta, bounds):
* 'obj_func' is the objective function to be maximized, which
takes the hyperparameters theta as parameter and an
optional flag eval_gradient, which determines if the
gradient is returned additionally to the function value
* 'initial_theta': the initial value for theta, which can be
used by local optimizers
* 'bounds': the bounds on the values of theta
....
Returned are the best found hyperparameters theta and
the corresponding value of the target function.
return theta_opt, func_min

Per default, the ‘fmin_l_bfgs_b’ algorithm from scipy.optimize is used. If None is passed,
the kernel’s parameters are kept fixed. Available internal optimizers are:

'fmin_l_bfgs_b'

n_restarts_optimizer [int, optional (default: 0)] The number of restarts of the optimizer for
finding the kernel’s parameters which maximize the log-marginal likelihood. The first run
of the optimizer is performed from the kernel’s initial parameters, the remaining ones (if
any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If
greater than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that
one run is performed.

normalize_y [boolean, optional (default: False)] Whether the target values y are normalized,
i.e., the mean of the observed target values become zero. This parameter should be set to
True if the target values’ mean is expected to differ considerable from zero. When enabled,
the normalization effectively modifies the GP’s prior based on the data, which contradicts
the likelihood principle; normalization is thus disabled per default.

copy_X_train [bool, optional (default: True)] If True, a persistent copy of the training data is
stored in the object. Otherwise, just a reference to the training data is stored, which might
cause predictions to change if the data is modified externally.

random_state [integer or numpy.RandomState, optional] The generator used to initialize the
centers. If an integer is given, it fixes the seed. Defaults to the global numpy random
number generator.

noise [string, “gaussian”, optional] If set to “gaussian”, then it is assumed that y is a noisy
estimate of f(x) where the noise is gaussian.

Attributes

X_train_ [array-like, shape = (n_samples, n_features)] Feature values in training data (also
required for prediction)

y_train_ [array-like, shape = (n_samples, [n_output_dims])] Target values in training data (also
required for prediction)

kernel_ kernel object The kernel used for prediction. The structure of the kernel is the same
as the one passed as parameter but with optimized hyperparameters

L_ [array-like, shape = (n_samples, n_samples)] Lower-triangular Cholesky decomposition of
the kernel in X_train_

132 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

alpha_ [array-like, shape = (n_samples,)] Dual coefficients of training data points in kernel
space

log_marginal_likelihood_value_ [float] The log-marginal-likelihood of self.kernel_.
theta

noise_ [float] Estimate of the gaussian noise. Useful only when noise is set to “gaussian”.

Methods

fit(self, X, y) Fit Gaussian process regression model.
get_params(self[, deep]) Get parameters for this estimator.
log_marginal_likelihood(self[, theta, . . .]) Returns log-marginal likelihood of theta for training

data.
predict(self, X[, return_std, return_cov, . . .]) Predict output for X.
sample_y(self, X[, n_samples, random_state]) Draw samples from Gaussian process and evaluate at

X.
score(self, X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(self, **params) Set the parameters of this estimator.

__init__(self, kernel=None, alpha=1e-10, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, nor-
malize_y=False, copy_X_train=True, random_state=None, noise=None)

Initialize self. See help(type(self)) for accurate signature.

fit(self, X, y)
Fit Gaussian process regression model.

Parameters

X [array-like, shape = (n_samples, n_features)] Training data

y [array-like, shape = (n_samples, [n_output_dims])] Target values

Returns

self Returns an instance of self.

get_params(self, deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

log_marginal_likelihood(self, theta=None, eval_gradient=False, clone_kernel=True)
Returns log-marginal likelihood of theta for training data.

Parameters

theta [array-like of shape (n_kernel_params,) or None] Kernel hyperparameters for
which the log-marginal likelihood is evaluated. If None, the precomputed
log_marginal_likelihood of self.kernel_.theta is returned.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 133

scikit-optimize Documentation, Release 0.7.4

eval_gradient [bool, default: False] If True, the gradient of the log-marginal likelihood
with respect to the kernel hyperparameters at position theta is returned additionally. If
True, theta must not be None.

clone_kernel [bool, default=True] If True, the kernel attribute is copied. If False, the kernel
attribute is modified, but may result in a performance improvement.

Returns

log_likelihood [float] Log-marginal likelihood of theta for training data.

log_likelihood_gradient [array, shape = (n_kernel_params,), optional] Gradient of the log-
marginal likelihood with respect to the kernel hyperparameters at position theta. Only
returned when eval_gradient is True.

predict(self, X, return_std=False, return_cov=False, return_mean_grad=False, re-
turn_std_grad=False)

Predict output for X.

In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or
covariance (return_cov=True), the gradient of the mean and the standard-deviation with respect to X can
be optionally provided.

Parameters

X [array-like, shape = (n_samples, n_features)] Query points where the GP is evaluated.

return_std [bool, default: False] If True, the standard-deviation of the predictive distribu-
tion at the query points is returned along with the mean.

return_cov [bool, default: False] If True, the covariance of the joint predictive distribution
at the query points is returned along with the mean.

return_mean_grad [bool, default: False] Whether or not to return the gradient of the mean.
Only valid when X is a single point.

return_std_grad [bool, default: False] Whether or not to return the gradient of the std. Only
valid when X is a single point.

Returns

y_mean [array, shape = (n_samples, [n_output_dims])] Mean of predictive distribution a
query points

y_std [array, shape = (n_samples,), optional] Standard deviation of predictive distribution at
query points. Only returned when return_std is True.

y_cov [array, shape = (n_samples, n_samples), optional] Covariance of joint predictive dis-
tribution a query points. Only returned when return_cov is True.

y_mean_grad [shape = (n_samples, n_features)] The gradient of the predicted mean

y_std_grad [shape = (n_samples, n_features)] The gradient of the predicted std.

sample_y(self, X, n_samples=1, random_state=0)
Draw samples from Gaussian process and evaluate at X.

Parameters

X [sequence of length n_samples] Query points where the GP is evaluated. Could either be
array-like with shape = (n_samples, n_features) or a list of objects.

n_samples [int, default: 1] The number of samples drawn from the Gaussian process

134 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

random_state [int, RandomState instance or None, optional (default=0)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

Returns

y_samples [array, shape = (n_samples_X, [n_output_dims], n_samples)] Values of
n_samples samples drawn from Gaussian process and evaluated at query points.

score(self, X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average'
from version 0.23 to keep consistent with r2_score(). This will influence the score method of
all the multioutput regressors (except for MultiOutputRegressor). To specify the default value
manually and avoid the warning, please either call r2_score() directly or make a custom scorer with
make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using skopt.learning.GaussianProcessRegressor

• Use different base estimators for optimization

5.5. skopt.learning: Machine learning extensions for model-based optimization. 135

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer

scikit-optimize Documentation, Release 0.7.4

5.5.3 skopt.learning.GradientBoostingQuantileRegressor

class skopt.learning.GradientBoostingQuantileRegressor(quantiles=[0.16, 0.5, 0.84],
base_estimator=None,
n_jobs=1, ran-
dom_state=None)

Predict several quantiles with one estimator.

This is a wrapper around GradientBoostingRegressor’s quantile regression that allows you to predict
several quantiles in one go.

Parameters

quantiles [array-like] Quantiles to predict. By default the 16, 50 and 84% quantiles are pre-
dicted.

base_estimator [GradientBoostingRegressor instance or None (default)] Quantile regressor
used to make predictions. Only instances of GradientBoostingRegressor are sup-
ported. Use this to change the hyper-parameters of the estimator.

n_jobs [int, default=1] The number of jobs to run in parallel for fit. If -1, then the number of
jobs is set to the number of cores.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Methods

fit(self, X, y) Fit one regressor for each quantile.
get_params(self[, deep]) Get parameters for this estimator.
predict(self, X[, return_std, return_quantiles]) Predict.
score(self, X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(self, **params) Set the parameters of this estimator.

__init__(self, quantiles=[0.16, 0.5, 0.84], base_estimator=None, n_jobs=1, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(self, X, y)
Fit one regressor for each quantile.

Parameters

X [array-like, shape=(n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y [array-like, shape=(n_samples,)] Target values (real numbers in regression)

get_params(self, deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

136 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

predict(self, X, return_std=False, return_quantiles=False)
Predict.

Predict X at every quantile if return_std is set to False. If return_std is set to True, then return the
mean and the predicted standard deviation, which is approximated as the (0.84th quantile - 0.16th quantile)
divided by 2.0

Parameters

X [array-like, shape=(n_samples, n_features)] where n_samples is the number of samples
and n_features is the number of features.

score(self, X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average'
from version 0.23 to keep consistent with r2_score(). This will influence the score method of
all the multioutput regressors (except for MultiOutputRegressor). To specify the default value
manually and avoid the warning, please either call r2_score() directly or make a custom scorer with
make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 137

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer

scikit-optimize Documentation, Release 0.7.4

5.5.4 skopt.learning.RandomForestRegressor

class skopt.learning.RandomForestRegressor(n_estimators=10, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, boot-
strap=True, oob_score=False, n_jobs=1,
random_state=None, verbose=0,
warm_start=False, min_variance=0.0)

RandomForestRegressor that supports conditional std computation.

Parameters

n_estimators [integer, optional (default=10)] The number of trees in the forest.

criterion [string, optional (default=”mse”)] The function to measure the quality of a split. Sup-
ported criteria are “mse” for the mean squared error, which is equal to variance reduction as
feature selection criterion, and “mae” for the mean absolute error.

max_features [int, float, string or None, optional (default=”auto”)] The number of features to
consider when looking for the best split: - If int, then consider max_features features at
each split. - If float, then max_features is a percentage and

int(max_features * n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_depth [integer or None, optional (default=None)] The maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min_samples_split samples.

min_samples_split [int, float, optional (default=2)] The minimum number of samples required
to split an internal node: - If int, then consider min_samples_split as the minimum
number. - If float, then min_samples_split is a percentage and

ceil(min_samples_split * n_samples) are the minimum number of sam-
ples for each split.

min_samples_leaf [int, float, optional (default=1)] The minimum number of samples required
to be at a leaf node: - If int, then consider min_samples_leaf as the minimum number.
- If float, then min_samples_leaf is a percentage and

ceil(min_samples_leaf * n_samples) are the minimum number of sam-
ples for each node.

min_weight_fraction_leaf [float, optional (default=0.)] The minimum weighted fraction of the
sum total of weights (of all the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.

138 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

max_leaf_nodes [int or None, optional (default=None)] Grow trees with max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then
unlimited number of leaf nodes.

min_impurity_decrease [float, optional (default=0.)] A node will be split if this split induces a
decrease of the impurity greater than or equal to this value. The weighted impurity decrease
equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in the
right child. N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight
is passed.

bootstrap [boolean, optional (default=True)] Whether bootstrap samples are used when build-
ing trees.

oob_score [bool, optional (default=False)] whether to use out-of-bag samples to estimate the
R^2 on unseen data.

n_jobs [integer, optional (default=1)] The number of jobs to run in parallel for both fit and
predict. If -1, then the number of jobs is set to the number of cores.

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

verbose [int, optional (default=0)] Controls the verbosity of the tree building process.

warm_start [bool, optional (default=False)] When set to True, reuse the solution of the pre-
vious call to fit and add more estimators to the ensemble, otherwise, just fit a whole new
forest.

Attributes

estimators_ [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

feature_importances_ [array of shape = [n_features]] Return the feature importances
(the higher, the more important the feature).

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate.

oob_prediction_ [array of shape = [n_samples]] Prediction computed with out-of-bag estimate
on the training set.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by set-
ting those parameter values. The features are always randomly permuted at each split. Therefore, the best found
split may vary, even with the same training data, max_features=n_features and bootstrap=False,
if the improvement of the criterion is identical for several splits enumerated during the search of the best split.
To obtain a deterministic behaviour during fitting, random_state has to be fixed.

5.5. skopt.learning: Machine learning extensions for model-based optimization. 139

scikit-optimize Documentation, Release 0.7.4

References

[R91c6cd8711c5-1]

Methods

apply(self, X) Apply trees in the forest to X, return leaf indices.
decision_path(self, X) Return the decision path in the forest.
fit(self, X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params(self[, deep]) Get parameters for this estimator.
predict(self, X[, return_std]) Predict continuous output for X.
score(self, X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(self, **params) Set the parameters of this estimator.

__init__(self, n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False,
n_jobs=1, random_state=None, verbose=0, warm_start=False, min_variance=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(self, X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [array_like, shape = [n_samples, n_estimators]] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(self, X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse csr array, shape = [n_samples, n_nodes]] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes.

n_nodes_ptr [array of size (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_

Return the feature importances (the higher, the more important the feature).

Returns

140 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

feature_importances_ [array, shape = [n_features]] The values of this array sum to 1, unless
all trees are single node trees consisting of only the root node, in which case it will be an
array of zeros.

fit(self, X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [array-like or sparse matrix of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(self, deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(self, X, return_std=False)
Predict continuous output for X.

Parameters

X [array of shape = (n_samples, n_features)] Input data.

return_std [boolean] Whether or not to return the standard deviation.

Returns

predictions [array-like of shape = (n_samples,)] Predicted values for X. If criterion is set to
“mse”, then predictions[i] ~= mean(y | X[i]).

std [array-like of shape=(n_samples,)] Standard deviation of y at X. If criterion is set to
“mse”, then std[i] ~= std(y | X[i]).

score(self, X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

5.5. skopt.learning: Machine learning extensions for model-based optimization. 141

scikit-optimize Documentation, Release 0.7.4

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average'
from version 0.23 to keep consistent with r2_score(). This will influence the score method of
all the multioutput regressors (except for MultiOutputRegressor). To specify the default value
manually and avoid the warning, please either call r2_score() directly or make a custom scorer with
make_scorer() (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(self, **params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

5.6 skopt.optimizer: Optimizer

User guide: See the Optimizer, an ask-and-tell interface section for further details.

optimizer.Optimizer(dimensions[, . . .]) Run bayesian optimisation loop.

5.6.1 skopt.optimizer.Optimizer

class skopt.optimizer.Optimizer(dimensions, base_estimator=’gp’, n_random_starts=None,
n_initial_points=10, acq_func=’gp_hedge’,
acq_optimizer=’auto’, random_state=None,
model_queue_size=None, acq_func_kwargs=None,
acq_optimizer_kwargs=None)

Run bayesian optimisation loop.

An Optimizer represents the steps of a bayesian optimisation loop. To use it you need to provide your own
loop mechanism. The various optimisers provided by skopt use this class under the hood.

Use this class directly if you want to control the iterations of your bayesian optimisation loop.

Parameters

142 Chapter 5. API Reference

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer

scikit-optimize Documentation, Release 0.7.4

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

base_estimator ["GP", "RF", "ET", "GBRT" or sklearn regressor,]

default=‘”GP”‘ Should inherit from sklearn.base.RegressorMixin. In addition the
predictmethod, should have an optional return_std argument, which returns std(Y
| x)` along with E[Y | x]. If base_estimator is one of [“GP”, “RF”, “ET”, “GBRT”],
a default surrogate model of the corresponding type is used corresponding to what is used
in the minimize functions.

n_random_starts [int, default=10] Deprecated since version use: n_initial_points in-
stead.

n_initial_points [int, default=10] Number of evaluations of func with initialization points
before approximating it with base_estimator. Points provided as x0 count as initial-
ization points. If len(x0) < n_initial_points additional points are sampled at random.

acq_func [string, default=‘”gp_hedge”‘] Function to minimize over the posterior distribution.
Can be either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "gp_hedge" Probabilistically choose one of the above three acquisition functions at
every iteration.

– The gains g_i are initialized to zero.

– At every iteration,

* Each acquisition function is optimised independently to propose an candidate
point X_i.

* Out of all these candidate points, the next point X_best is chosen by
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂𝑔𝑖)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that 𝑔𝑖− = 𝜇(𝑋𝑖)

• ‘”EIps” for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of ‘”EIps

acq_optimizer [string, "sampling" or "lbfgs", default=‘”auto”‘] Method to minimize the
acquistion function. The fit model is updated with the optimal value obtained by optimizing
acq_func with acq_optimizer.

• If set to "auto", then acq_optimizer is configured on the basis of the
base_estimator and the space searched over. If the space is Categorical or if the estimator
provided based on tree-models then this is set to be “sampling”‘.

5.6. skopt.optimizer: Optimizer 143

https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html#sklearn.base.RegressorMixin

scikit-optimize Documentation, Release 0.7.4

• If set to "sampling", then acq_func is optimized by computing acq_func at
n_points randomly sampled points.

• If set to "lbfgs", then acq_func is optimized by

– Sampling n_restarts_optimizer points randomly.

– "lbfgs" is run for 20 iterations with these points as initial points to find local
minima.

– The optimal of these local minima is used to update the prior.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

acq_func_kwargs [dict] Additional arguments to be passed to the acquistion function.

acq_optimizer_kwargs [dict] Additional arguments to be passed to the acquistion optimizer.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Attributes

Xi [list] Points at which objective has been evaluated.

yi [scalar] Values of objective at corresponding points in Xi.

models [list] Regression models used to fit observations and compute acquisition function.

space [Space] An instance of skopt.space.Space. Stores parameter search space used to
sample points, bounds, and type of parameters.

Methods

ask(self[, n_points, strategy]) Query point or multiple points at which objective
should be evaluated.

copy(self[, random_state]) Create a shallow copy of an instance of the optimizer.
get_result(self) Returns the same result that would be returned by

opt.tell() but without calling tell
run(self, func[, n_iter]) Execute ask() + tell() n_iter times
tell(self, x, y[, fit]) Record an observation (or several) of the objective

function.
update_next(self) Updates the value returned by opt.ask().

__init__(self, dimensions, base_estimator=’gp’, n_random_starts=None, n_initial_points=10,
acq_func=’gp_hedge’, acq_optimizer=’auto’, random_state=None,
model_queue_size=None, acq_func_kwargs=None, acq_optimizer_kwargs=None)

Initialize self. See help(type(self)) for accurate signature.

ask(self, n_points=None, strategy=’cl_min’)
Query point or multiple points at which objective should be evaluated.

n_points [int or None, default=None] Number of points returned by the ask method. If the value is None,
a single point to evaluate is returned. Otherwise a list of points to evaluate is returned of size n_points.
This is useful if you can evaluate your objective in parallel, and thus obtain more objective function
evaluations per unit of time.

strategy [string, default=”cl_min”] Method to use to sample multiple points (see also n_points de-
scription). This parameter is ignored if n_points = None. Supported options are "cl_min",

144 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

"cl_mean" or "cl_max".

• If set to "cl_min", then constant liar strategy is used with lie objective value being mini-
mum of observed objective values. "cl_mean" and "cl_max" means mean and max of
values respectively. For details on this strategy see:

https://hal.archives-ouvertes.fr/hal-00732512/document

With this strategy a copy of optimizer is created, which is then asked for a point, and the point
is told to the copy of optimizer with some fake objective (lie), the next point is asked from
copy, it is also told to the copy with fake objective and so on. The type of lie defines different
flavours of cl_x strategies.

copy(self, random_state=None)
Create a shallow copy of an instance of the optimizer.

Parameters

random_state [int, RandomState instance, or None (default)] Set the random state of the
copy.

get_result(self)
Returns the same result that would be returned by opt.tell() but without calling tell

Returns

res [OptimizeResult, scipy object] OptimizeResult instance with the required informa-
tion.

run(self, func, n_iter=1)
Execute ask() + tell() n_iter times

tell(self, x, y, fit=True)
Record an observation (or several) of the objective function.

Provide values of the objective function at points suggested by ask() or other points. By default a new
model will be fit to all observations. The new model is used to suggest the next point at which to evaluate
the objective. This point can be retrieved by calling ask().

To add observations without fitting a new model set fit to False.

To add multiple observations in a batch pass a list-of-lists for x and a list of scalars for y.

Parameters

x [list or list-of-lists] Point at which objective was evaluated.

y [scalar or list] Value of objective at x.

fit [bool, default=True] Fit a model to observed evaluations of the objective. A model will
only be fitted after n_initial_points points have been told to the optimizer irrespec-
tive of the value of fit.

update_next(self)
Updates the value returned by opt.ask(). Useful if a parameter was updated after ask was called.

optimizer.base_minimize(func, dimensions,
. . .)

Base optimizer class :param func: Function to mini-
mize.

optimizer.dummy_minimize(func, dimensions[,
. . .])

Random search by uniform sampling within the given
bounds.

optimizer.forest_minimize(func, dimen-
sions)

Sequential optimisation using decision trees.

Continued on next page

5.6. skopt.optimizer: Optimizer 145

https://hal.archives-ouvertes.fr/hal-00732512/document

scikit-optimize Documentation, Release 0.7.4

Table 23 – continued from previous page
optimizer.gbrt_minimize(func, dimensions[,
. . .])

Sequential optimization using gradient boosted trees.

optimizer.gp_minimize(func, dimensions[,
. . .])

Bayesian optimization using Gaussian Processes.

5.6.2 skopt.optimizer.base_minimize

skopt.optimizer.base_minimize(func, dimensions, base_estimator, n_calls=100,
n_random_starts=10, acq_func=’EI’, acq_optimizer=’lbfgs’,
x0=None, y0=None, random_state=None, verbose=False, call-
back=None, n_points=10000, n_restarts_optimizer=5, xi=0.01,
kappa=1.96, n_jobs=1, model_queue_size=None)

Base optimizer class :param func: Function to minimize. Should take a single list of parameters

and return the objective value.

If you have a search-space where all dimensions have names, then you can use skopt.utils.
use_named_args as a decorator on your objective function, in order to call it directly with the
named arguments. See use_named_args for an example.

Parameters

• dimensions (list, shape (n_dims,)) – List of search space dimensions. Each
search dimension can be defined either as

– a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

– a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

– as a list of categories (for Categorical dimensions), or

– an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

• base_estimator (sklearn regressor) – Should inherit from sklearn.base.
RegressorMixin. In addition, should have an optional return_std argument, which
returns std(Y | x)` along with E[Y | x].

• n_calls (int, default=100) – Maximum number of calls to func. An objective
fucntion will always be evaluated this number of times; Various options to supply initializa-
tion points do not affect this value.

• n_random_starts (int, default=10) – Number of evaluations of func with ran-
dom points before approximating it with base_estimator.

• acq_func (string, default=`"EI"`) – Function to minimize over the posterior
distribution. Can be either

– "LCB" for lower confidence bound,

– "EI" for negative expected improvement,

– "PI" for negative probability of improvement.

– "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

146 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

scikit-optimize Documentation, Release 0.7.4

– "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of ‘”EIps

• acq_optimizer (string, "sampling" or "lbfgs", default=‘”lbfgs”‘) – Method to
minimize the acquistion function. The fit model is updated with the optimal value obtained
by optimizing acq_func with acq_optimizer.

– If set to "sampling", then acq_func is optimized by computing acq_func at
n_points randomly sampled points and the smallest value found is used.

– If set to "lbfgs", then

* The n_restarts_optimizer no. of points which the acquisition function is
least are taken as start points.

* "lbfgs" is run for 20 iterations with these points as initial points to find local
minima.

* The optimal of these local minima is used to update the prior.

• x0 (list, list of lists or None) – Initial input points.

– If it is a list of lists, use it as a list of input points. If no corresponding outputs y0 are
supplied, then len(x0) of total calls to the objective function will be spent evaluating the
points in x0. If the corresponding outputs are provided, then they will be used together
with evaluated points during a run of the algorithm to construct a surrogate.

– If it is a list, use it as a single initial input point. The algorithm will spend 1 call to
evaluate the initial point, if the outputs are not provided.

– If it is None, no initial input points are used.

• y0 (list, scalar or None) – Objective values at initial input points.

– If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

– If it is a scalar, then it corresponds to the evaluation of the function at x0.

– If it is None and x0 is provided, then the function is evaluated at each element of x0.

• random_state (int, RandomState instance, or None (default)) –
Set random state to something other than None for reproducible results.

• verbose (boolean, default=False) – Control the verbosity. It is advised to set
the verbosity to True for long optimization runs.

• callback (callable, list of callables, optional) – If callable then
callback(res) is called after each call to func. If list of callables, then each callable
in the list is called.

• n_points (int, default=10000) – If acq_optimizer is set to "sampling",
then acq_func is optimized by computing acq_func at n_points randomly sampled
points.

• n_restarts_optimizer (int, default=5) – The number of restarts of the opti-
mizer when acq_optimizer is "lbfgs".

• xi (float, default=0.01) – Controls how much improvement one wants over the
previous best values. Used when the acquisition is either "EI" or "PI".

• kappa (float, default=1.96) – Controls how much of the variance in the predicted
values should be taken into account. If set to be very high, then we are favouring exploration
over exploitation and vice versa. Used when the acquisition is "LCB".

5.6. skopt.optimizer: Optimizer 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

scikit-optimize Documentation, Release 0.7.4

• n_jobs (int, default=1) – Number of cores to run in parallel while running the lbfgs
optimizations over the acquisition function. Valid only when acq_optimizer is set to
“lbfgs.” Defaults to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.

• model_queue_size (int or None, default=None) – Keeps list of models only
as long as the argument given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

5.6.3 skopt.optimizer.dummy_minimize

skopt.optimizer.dummy_minimize(func, dimensions, n_calls=100, x0=None, y0=None,
random_state=None, verbose=False, callback=None,
model_queue_size=None)

Random search by uniform sampling within the given bounds.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args as a decorator on your objective function, in order to call it
directly with the named arguments. See use_named_args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, prior) tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

n_calls [int, default=100] Number of calls to func to find the minimum.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

148 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, list of callables, optional] If callable then callback(res) is called after
each call to func. If list of callables, then each callable in the list is called.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimisation space.

• specs [dict]: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

5.6.4 skopt.optimizer.forest_minimize

skopt.optimizer.forest_minimize(func, dimensions, base_estimator=’ET’, n_calls=100,
n_random_starts=10, acq_func=’EI’, x0=None, y0=None,
random_state=None, verbose=False, callback=None,
n_points=10000, xi=0.01, kappa=1.96, n_jobs=1,
model_queue_size=None)

Sequential optimisation using decision trees.

A tree based regression model is used to model the expensive to evaluate function func. The model is improved
by sequentially evaluating the expensive function at the next best point. Thereby finding the minimum of func
with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

5.6. skopt.optimizer: Optimizer 149

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args() as a decorator on your objective function, in order to call
it directly with the named arguments. See skopt.utils.use_named_args()

for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, prior) tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

NOTE: The upper and lower bounds are inclusive for Integer dimensions.

base_estimator [string or Regressor, default=”ET”] The regressor to use as surrogate
model. Can be either

• "RF" for random forest regressor

• "ET" for extra trees regressor

• instance of regressor with support for return_std in its predict method

The predefined models are initialized with good defaults. If you want to adjust the model
parameters pass your own instance of a regressor which returns the mean and standard de-
viation when making predictions.

n_calls [int, default=100] Number of calls to func.

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=”LCB”] Function to minimize over the forest posterior. Can be either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of "EIps"

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

150 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, optional] If provided, then callback(res) is called after call to func.

n_points [int, default=10000] Number of points to sample when minimizing the acquisition
function.

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

n_jobs [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then
the number of jobs is set to the number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.gp_minimize, skopt.dummy_minimize

5.6. skopt.optimizer: Optimizer 151

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

5.6.5 skopt.optimizer.gbrt_minimize

skopt.optimizer.gbrt_minimize(func, dimensions, base_estimator=None, n_calls=100,
n_random_starts=10, acq_func=’EI’, acq_optimizer=’auto’,
x0=None, y0=None, random_state=None, verbose=False, call-
back=None, n_points=10000, xi=0.01, kappa=1.96, n_jobs=1,
model_queue_size=None)

Sequential optimization using gradient boosted trees.

Gradient boosted regression trees are used to model the (very) expensive to evaluate function func. The
model is improved by sequentially evaluating the expensive function at the next best point. Thereby finding the
minimum of func with as few evaluations as possible.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args as a decorator on your objective function, in order to call it
directly with the named arguments. See use_named_args for an example.

dimensions [list, shape (n_dims,)] List of search space dimensions. Each search dimension can
be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

base_estimator [GradientBoostingQuantileRegressor] The regressor to use as
surrogate model

n_calls [int, default=100] Number of calls to func.

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=‘”LCB”‘] Function to minimize over the forest posterior. Can be
either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken.

• "PIps" for negated probability of improvement per second.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

152 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, optional] If provided, then callback(res) is called after call to func.

n_points [int, default=10000] Number of points to sample when minimizing the acquisition
function.

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

n_jobs [int, default=1] The number of jobs to run in parallel for fit and predict. If -1, then
the number of jobs is set to the number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

5.6. skopt.optimizer: Optimizer 153

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

5.6.6 skopt.optimizer.gp_minimize

skopt.optimizer.gp_minimize(func, dimensions, base_estimator=None, n_calls=100,
n_random_starts=10, acq_func=’gp_hedge’, acq_optimizer=’auto’,
x0=None, y0=None, random_state=None, verbose=False,
callback=None, n_points=10000, n_restarts_optimizer=5,
xi=0.01, kappa=1.96, noise=’gaussian’, n_jobs=1,
model_queue_size=None)

Bayesian optimization using Gaussian Processes.

If every function evaluation is expensive, for instance when the parameters are the hyperparameters of a neural
network and the function evaluation is the mean cross-validation score across ten folds, optimizing the hyperpa-
rameters by standard optimization routines would take for ever!

The idea is to approximate the function using a Gaussian process. In other words the function values are assumed
to follow a multivariate gaussian. The covariance of the function values are given by a GP kernel between the
parameters. Then a smart choice to choose the next parameter to evaluate can be made by the acquisition
function over the Gaussian prior which is much quicker to evaluate.

The total number of evaluations, n_calls, are performed like the following. If x0 is provided but not y0,
then the elements of x0 are first evaluated, followed by n_random_starts evaluations. Finally, n_calls
- len(x0) - n_random_starts evaluations are made guided by the surrogate model. If x0 and y0 are
both provided then n_random_starts evaluations are first made then n_calls - n_random_starts
subsequent evaluations are made guided by the surrogate model.

Parameters

func [callable] Function to minimize. Should take a single list of parameters and return the
objective value.

If you have a search-space where all dimensions have names, then you can use skopt.
utils.use_named_args() as a decorator on your objective function, in order to call
it directly with the named arguments. See use_named_args for an example.

dimensions [[list, shape (n_dims,)] List of search space dimensions. Each search dimension
can be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer

dimensions.

base_estimator [a Gaussian process estimator] The Gaussian process estimator to use for opti-
mization. By default, a Matern kernel is used with the following hyperparameters tuned.

• All the length scales of the Matern kernel.

• The covariance amplitude that each element is multiplied with.

• Noise that is added to the matern kernel. The noise is assumed to be iid gaussian.

n_calls [int, default=100] Number of calls to func.

154 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

n_random_starts [int, default=10] Number of evaluations of func with random points before
approximating it with base_estimator.

acq_func [string, default=‘”gp_hedge”‘] Function to minimize over the gaussian prior. Can be
either

• "LCB" for lower confidence bound.

• "EI" for negative expected improvement.

• "PI" for negative probability of improvement.

• "gp_hedge" Probabilistically choose one of the above three acquisition functions
at every iteration. The weightage given to these gains can be set by 𝜂 through
acq_func_kwargs.

– The gains g_i are initialized to zero.

– At every iteration,

* Each acquisition function is optimised independently to propose an candidate point
X_i.

* Out of all these candidate points, the next point X_best is chosen by 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜂𝑔𝑖)

* After fitting the surrogate model with (X_best, y_best), the gains are updated
such that 𝑔𝑖− = 𝜇(𝑋𝑖)

• "EIps" for negated expected improvement per second to take into account the function
compute time. Then, the objective function is assumed to return two values, the first being
the objective value and the second being the time taken in seconds.

• "PIps" for negated probability of improvement per second. The return type of the
objective function is assumed to be similar to that of ‘”EIps

acq_optimizer [string, "sampling" or "lbfgs", default=‘”lbfgs”‘] Method to minimize
the acquistion function. The fit model is updated with the optimal value obtained by opti-
mizing acq_func with acq_optimizer.

The acq_func is computed at n_points sampled randomly.

• If set to "auto", then acq_optimizer is configured on the basis of the space
searched over. If the space is Categorical then this is set to be “sampling”‘.

• If set to "sampling", then the point among these n_points where the acq_func is
minimum is the next candidate minimum.

• If set to "lbfgs", then

– The n_restarts_optimizer no. of points which the acquisition function is least
are taken as start points.

– "lbfgs" is run for 20 iterations with these points as initial points to find local minima.

– The optimal of these local minima is used to update the prior.

x0 [list, list of lists or None] Initial input points.

• If it is a list of lists, use it as a list of input points.

• If it is a list, use it as a single initial input point.

• If it is None, no initial input points are used.

y0 [list, scalar or None] Evaluation of initial input points.

5.6. skopt.optimizer: Optimizer 155

scikit-optimize Documentation, Release 0.7.4

• If it is a list, then it corresponds to evaluations of the function at each element of x0 : the
i-th element of y0 corresponds to the function evaluated at the i-th element of x0.

• If it is a scalar, then it corresponds to the evaluation of the function at x0.

• If it is None and x0 is provided, then the function is evaluated at each element of x0.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

verbose [boolean, default=False] Control the verbosity. It is advised to set the verbosity to True
for long optimization runs.

callback [callable, list of callables, optional] If callable then callback(res) is called after
each call to func. If list of callables, then each callable in the list is called.

n_points [int, default=10000] Number of points to sample to determine the next “best” point.
Useless if acq_optimizer is set to "lbfgs".

n_restarts_optimizer [int, default=5] The number of restarts of the optimizer when
acq_optimizer is "lbfgs".

kappa [float, default=1.96] Controls how much of the variance in the predicted values should be
taken into account. If set to be very high, then we are favouring exploration over exploitation
and vice versa. Used when the acquisition is "LCB".

xi [float, default=0.01] Controls how much improvement one wants over the previous best val-
ues. Used when the acquisition is either "EI" or "PI".

noise [float, default=”gaussian”]

• Use noise=”gaussian” if the objective returns noisy observations. The noise of each ob-
servation is assumed to be iid with mean zero and a fixed variance.

• If the variance is known before-hand, this can be set directly to the variance of the noise.

• Set this to a value close to zero (1e-10) if the function is noise-free. Setting to zero might
cause stability issues.

n_jobs [int, default=1] Number of cores to run in parallel while running the lbfgs optimizations
over the acquisition function. Valid only when acq_optimizer is set to “lbfgs.” Defaults
to 1 core. If n_jobs=-1, then number of jobs is set to number of cores.

model_queue_size [int or None, default=None] Keeps list of models only as long as the argu-
ment given. In the case of None, the list has no capped length.

Returns

res [OptimizeResult, scipy object] The optimization result returned as a OptimizeResult
object. Important attributes are:

• x [list]: location of the minimum.

• fun [float]: function value at the minimum.

• models: surrogate models used for each iteration.

• x_iters [list of lists]: location of function evaluation for each iteration.

• func_vals [array]: function value for each iteration.

• space [Space]: the optimization space.

• specs [dict]‘: the call specifications.

• rng [RandomState instance]: State of the random state at the end of minimization.

156 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

For more details related to the OptimizeResult object, refer http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.OptimizeResult.html

See also:

functions skopt.forest_minimize, skopt.dummy_minimize

5.7 skopt.plots: Plotting functions.

Plotting functions.

User guide: See the Plotting tools section for further details.

plots.partial_dependence(space, model, i[,
. . .])

Calculate the partial dependence for dimensions i and
j with respect to the objective value, as approximated
by model.

plots.plot_convergence(*args, **kwargs) Plot one or several convergence traces.
plots.plot_evaluations(result[, bins, . . .]) Visualize the order in which points where sampled.
plots.plot_objective(result[, levels, . . .]) Pairwise dependence plot of the objective function.
plots.plot_regret(*args, **kwargs) Plot one or several cumulative regret traces.

5.7.1 skopt.plots.partial_dependence

skopt.plots.partial_dependence(space, model, i, j=None, sample_points=None, n_samples=250,
n_points=40, x_eval=None)

Calculate the partial dependence for dimensions i and j with respect to the objective value, as approximated by
model.

The partial dependence plot shows how the value of the dimensions i and j influence the model predictions
after “averaging out” the influence of all other dimensions.

When x_eval is not None, the given values are used instead of random samples. In this case, n_samples
will be ignored.

Parameters

space [Space] The parameter space over which the minimization was performed.

model Surrogate model for the objective function.

i [int] The first dimension for which to calculate the partial dependence.

j [int, default=None] The second dimension for which to calculate the partial dependence. To
calculate the 1D partial dependence on i alone set j=None.

sample_points [np.array, shape=(n_points, n_dims), default=None] Only used when
x_eval=None, i.e in case partial dependence should be calculated. Randomly sampled
and transformed points to use when averaging the model function at each of the n_points
when using partial dependence.

n_samples [int, default=100] Number of random samples to use for averaging the model
function at each of the n_points when using partial dependence. Only used when
sample_points=None and x_eval=None.

n_points [int, default=40] Number of points at which to evaluate the partial dependence along
each dimension i and j.

5.7. skopt.plots: Plotting functions. 157

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html

scikit-optimize Documentation, Release 0.7.4

x_eval [list, default=None] x_eval is a list of parameter values or None. In case x_eval is
not None, the parsed dependence will be calculated using these values. Otherwise, random
selected samples will be used.

Returns

For 1D partial dependence:

xi [np.array] The points at which the partial dependence was evaluated.

yi [np.array] The value of the model at each point xi.

For 2D partial dependence:

xi [np.array, shape=n_points] The points at which the partial dependence was evaluated.

yi [np.array, shape=n_points] The points at which the partial dependence was evaluated.

zi [np.array, shape=(n_points, n_points)] The value of the model at each point (xi, yi).

For Categorical variables, the xi (and yi for 2D) returned are

the indices of the variable in Dimension.categories.

5.7.2 skopt.plots.plot_convergence

skopt.plots.plot_convergence(*args, **kwargs)
Plot one or several convergence traces.

Parameters

args[i] [OptimizeResult, list of OptimizeResult, or tuple] The result(s) for which to
plot the convergence trace.

• if OptimizeResult, then draw the corresponding single trace;

• if list of OptimizeResult, then draw the corresponding convergence traces in trans-
parency, along with the average convergence trace;

• if tuple, then args[i][0] should be a string label and args[i][1] an
OptimizeResult or a list of OptimizeResult.

ax [Axes, optional] The matplotlib axes on which to draw the plot, or None to create a new
one.

true_minimum [float, optional] The true minimum value of the function, if known.

yscale [None or string, optional] The scale for the y-axis.

Returns

ax [Axes] The matplotlib axes.

Examples using skopt.plots.plot_convergence

• Tuning a scikit-learn estimator with skopt

• Comparing surrogate models

• Bayesian optimization with skopt

158 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

5.7.3 skopt.plots.plot_evaluations

skopt.plots.plot_evaluations(result, bins=20, dimensions=None)
Visualize the order in which points where sampled.

The scatter plot matrix shows at which points in the search space and in which order samples were evaluated.
Pairwise scatter plots are shown on the off-diagonal for each dimension of the search space. The order in which
samples were evaluated is encoded in each point’s color. The diagonal shows a histogram of sampled values for
each dimension. A red point indicates the found minimum.

Parameters

result [OptimizeResult] The result for which to create the scatter plot matrix.

bins [int, bins=20] Number of bins to use for histograms on the diagonal.

dimensions [list of str, default=None] Labels of the dimension variables. None defaults to
space.dimensions[i].name, or if also None to ['X_0', 'X_1', ..].

Returns

ax [Axes] The matplotlib axes.

Examples using skopt.plots.plot_evaluations

• Visualizing optimization results

5.7.4 skopt.plots.plot_objective

skopt.plots.plot_objective(result, levels=10, n_points=40, n_samples=250, size=2, zs-
cale=’linear’, dimensions=None, sample_source=’random’, min-
imum=’result’, n_minimum_search=None)

Pairwise dependence plot of the objective function.

The diagonal shows the partial dependence for dimension i with respect to the objective function. The off-
diagonal shows the partial dependence for dimensions i and j with respect to the objective function. The
objective function is approximated by result.model.

Pairwise scatter plots of the points at which the objective function was directly evaluated are shown on the off-
diagonal. A red point indicates per default the best observed minimum, but this can be changed by changing
argument ´minimum´.

Parameters

result [OptimizeResult] The result for which to create the scatter plot matrix.

levels [int, default=10] Number of levels to draw on the contour plot, passed directly to plt.
contour().

n_points [int, default=40] Number of points at which to evaluate the partial dependence along
each dimension.

n_samples [int, default=250] Number of samples to use for averaging the model function at
each of the n_points when sample_method is set to ‘random’.

size [float, default=2] Height (in inches) of each facet.

zscale [str, default=’linear’] Scale to use for the z axis of the contour plots. Either ‘linear’ or
‘log’.

5.7. skopt.plots: Plotting functions. 159

scikit-optimize Documentation, Release 0.7.4

dimensions [list of str, default=None] Labels of the dimension variables. None defaults to
space.dimensions[i].name, or if also None to ['X_0', 'X_1', ..].

sample_source [str or list of floats, default=’random’] Defines to samples generation to use for
averaging the model function at each of the n_points.

A partial dependence plot is only generated, when sample_source is set to ‘random’
and n_samples is sufficient.

sample_source can also be a list of floats, which is then used for averaging.

Valid strings:

• ‘random’ - n_samples random samples will used

• ‘result’ - Use only the best observed parameters

• ‘expected_minimum’ - Parameters that gives the best minimum Calculated using
scipy’s minimize method. This method currently does not work with categorical
values.

• ‘expected_minimum_random’ - Parameters that gives the best minimum when us-
ing naive random sampling. Works with categorical values.

minimum [str or list of floats, default = ‘result’] Defines the values for the red points in the
plots. Valid strings:

• ‘result’ - Use best observed parameters

• ‘expected_minimum’ - Parameters that gives the best minimum Calculated using
scipy’s minimize method. This method currently does not work with categorical
values.

• ‘expected_minimum_random’ - Parameters that gives the best minimum when us-
ing naive random sampling. Works with categorical values

n_minimum_search [int, default = None] Determines how many points should be evaluated
to find the minimum when using ‘expected_minimum’ or ‘expected_minimum_random’.
Parameter is used when sample_source and/or minimum is set to ‘expected_minimum’
or ‘expected_minimum_random’.

Returns

ax [Axes] The matplotlib axes.

Examples using skopt.plots.plot_objective

• Partial Dependence Plots

• Partial Dependence Plots with categorical values

• Visualizing optimization results

5.7.5 skopt.plots.plot_regret

skopt.plots.plot_regret(*args, **kwargs)
Plot one or several cumulative regret traces.

Parameters

args[i] [OptimizeResult, list of OptimizeResult, or tuple] The result(s) for which to
plot the cumulative regret trace.

160 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

• if OptimizeResult, then draw the corresponding single trace;

• if list of OptimizeResult, then draw the corresponding cumulative regret traces
in transparency, along with the average cumulative regret trace;

• if tuple, then args[i][0] should be a string label and args[i][1] an
OptimizeResult or a list of OptimizeResult.

ax [Axes‘, optional] The matplotlib axes on which to draw the plot, or None to create a new
one.

true_minimum [float, optional] The true minimum value of the function, if known.

yscale [None or string, optional] The scale for the y-axis.

Returns

ax [Axes] The matplotlib axes.

5.8 skopt.utils: Utils functions.

User guide: See the Utility functions section for further details.

utils.cook_estimator(base_estimator[, space]) Cook a default estimator.
utils.dimensions_aslist(search_space) Convert a dict representation of a search space into a list

of dimensions, ordered by sorted(search_space.keys()).
utils.expected_minimum(res[, . . .]) Compute the minimum over the predictions of the last

surrogate model.
utils.expected_minimum_random_sampling(res)Minimum search by doing naive random sampling, Re-

turns the parameters that gave the minimum function
value.

utils.dump(res, filename[, store_objective]) Store an skopt optimization result into a file.
utils.load(filename, **kwargs) Reconstruct a skopt optimization result from a file per-

sisted with skopt.dump.
utils.point_asdict(search_space,
point_as_list)

Convert the list representation of a point from a search
space to the dictionary representation, where keys are
dimension names and values are corresponding to the
values of dimensions in the list.

utils.point_aslist(search_space,
point_as_dict)

Convert a dictionary representation of a point from a
search space to the list representation.

utils.use_named_args(dimensions) Wrapper / decorator for an objective function that uses
named arguments to make it compatible with optimizers
that use a single list of parameters.

5.8.1 skopt.utils.cook_estimator

skopt.utils.cook_estimator(base_estimator, space=None, **kwargs)
Cook a default estimator.

For the special base_estimator called “DUMMY” the return value is None. This corresponds to sampling points
at random, hence there is no need for an estimator.

Parameters

base_estimator [“GP”, “RF”, “ET”, “GBRT”, “DUMMY”]

5.8. skopt.utils: Utils functions. 161

scikit-optimize Documentation, Release 0.7.4

or sklearn regressor, default=”GP”

Should inherit from sklearn.base.RegressorMixin. In addition the predict
method should have an optional return_std argument, which returns std(Y | x)`
along with E[Y | x]. If base_estimator is one of [“GP”, “RF”, “ET”, “GBRT”,
“DUMMY”], a surrogate model corresponding to the relevant X_minimize function is
created.

space [Space instance] Has to be provided if the base_estimator is a gaussian process. Ignored
otherwise.

kwargs [dict] Extra parameters provided to the base_estimator at init time.

5.8.2 skopt.utils.dimensions_aslist

skopt.utils.dimensions_aslist(search_space)
Convert a dict representation of a search space into a list of dimensions, ordered by sorted(search_space.keys()).

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and val-
ues are instances of classes that inherit from the class skopt.space.Dimension (Real,
Integer or Categorical)

Returns

params_space_list: list list of skopt.space.Dimension instances.

Examples

>>> from skopt.space.space import Real, Integer
>>> from skopt.utils import dimensions_aslist
>>> search_space = {'name1': Real(0,1),
... 'name2': Integer(2,4), 'name3': Real(-1,1)}
>>> dimensions_aslist(search_space)[0]
Real(low=0, high=1, prior='uniform', transform='identity')
>>> dimensions_aslist(search_space)[1]
Integer(low=2, high=4, prior='uniform', transform='identity')
>>> dimensions_aslist(search_space)[2]
Real(low=-1, high=1, prior='uniform', transform='identity')

5.8.3 skopt.utils.expected_minimum

skopt.utils.expected_minimum(res, n_random_starts=20, random_state=None)
Compute the minimum over the predictions of the last surrogate model. Uses
expected_minimum_random_sampling with ‘n_random_starts‘=100000, when the space contains any
categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true
objective function.

Parameters

162 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

res [OptimizeResult, scipy object] The optimization result returned by a skopt mini-
mizer.

n_random_starts [int, default=20] The number of random starts for the minimization of the
surrogate model.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

5.8.4 skopt.utils.expected_minimum_random_sampling

skopt.utils.expected_minimum_random_sampling(res, n_random_starts=100000, ran-
dom_state=None)

Minimum search by doing naive random sampling, Returns the parameters that gave the minimum function
value. Can be used when the space contains any categorical values.

Note: The returned minimum may not necessarily be an accurate prediction of the minimum of the true
objective function.

Parameters

res [OptimizeResult, scipy object] The optimization result returned by a skopt mini-
mizer.

n_random_starts [int, default=100000] The number of random starts for the minimization of
the surrogate model.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

Returns

x [list] location of the minimum.

fun [float] the surrogate function value at the minimum.

5.8.5 skopt.utils.dump

skopt.utils.dump(res, filename, store_objective=True, **kwargs)
Store an skopt optimization result into a file.

Parameters

res [OptimizeResult, scipy object] Optimization result object to be stored.

filename [string or pathlib.Path] The path of the file in which it is to be stored. The
compression method corresponding to one of the supported filename extensions (‘.z’, ‘.gz’,
‘.bz2’, ‘.xz’ or ‘.lzma’) will be used automatically.

5.8. skopt.utils: Utils functions. 163

scikit-optimize Documentation, Release 0.7.4

store_objective [boolean, default=True] Whether the objective function should be
stored. Set store_objective to False if your objective function (.
specs['args']['func']) is unserializable (i.e. if an exception is raised when
trying to serialize the optimization result).

Notice that if store_objective is set to False, a deep copy of the optimization result
is created, potentially leading to performance problems if res is very large. If the objective
function is not critical, one can delete it before calling skopt.dump() and thus avoid
deep copying of res.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib.
dump.

5.8.6 skopt.utils.load

skopt.utils.load(filename, **kwargs)
Reconstruct a skopt optimization result from a file persisted with skopt.dump.

Note: Notice that the loaded optimization result can be missing the objective function (.
specs['args']['func']) if skopt.dump was called with store_objective=False.

Parameters

filename [string or pathlib.Path] The path of the file from which to load the optimization
result.

**kwargs [other keyword arguments] All other keyword arguments will be passed to joblib.
load.

Returns

res [OptimizeResult, scipy object] Reconstructed OptimizeResult instance.

5.8.7 skopt.utils.point_asdict

skopt.utils.point_asdict(search_space, point_as_list)
Convert the list representation of a point from a search space to the dictionary representation, where keys are
dimension names and values are corresponding to the values of dimensions in the list.

See also:

skopt.utils.point_aslist

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and val-
ues are instances of classes that inherit from the class skopt.space.Dimension (Real,
Integer or Categorical)

point_as_list [list] list with parameter values.The order of parameters in the list is given by
sorted(params_space.keys()).

Returns

params_dict [OrderedDict] dictionary with parameter names as keys to which corresponding
parameter values are assigned.

164 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Examples

>>> from skopt.space.space import Real, Integer
>>> from skopt.utils import point_asdict
>>> search_space = {'name1': Real(0,1),
... 'name2': Integer(2,4), 'name3': Real(-1,1)}
>>> point_as_list = [0.66, 3, -0.15]
>>> point_asdict(search_space, point_as_list)
OrderedDict([('name1', 0.66), ('name2', 3), ('name3', -0.15)])

5.8.8 skopt.utils.point_aslist

skopt.utils.point_aslist(search_space, point_as_dict)
Convert a dictionary representation of a point from a search space to the list representation. The list of values is
created from the values of the dictionary, sorted by the names of dimensions used as keys.

See also:

skopt.utils.point_asdict

Parameters

search_space [dict] Represents search space. The keys are dimension names (strings) and val-
ues are instances of classes that inherit from the class skopt.space.Dimension (Real,
Integer or Categorical)

point_as_dict [dict] dict with parameter names as keys to which corresponding parameter val-
ues are assigned.

Returns

point_as_list [list] list with point values.The order of parameters in the list is given by
sorted(params_space.keys()).

Examples

>>> from skopt.space.space import Real, Integer
>>> from skopt.utils import point_aslist
>>> search_space = {'name1': Real(0,1),
... 'name2': Integer(2,4), 'name3': Real(-1,1)}
>>> point_as_dict = {'name1': 0.66, 'name2': 3, 'name3': -0.15}
>>> point_aslist(search_space, point_as_dict)
[0.66, 3, -0.15]

5.8.9 skopt.utils.use_named_args

skopt.utils.use_named_args(dimensions)
Wrapper / decorator for an objective function that uses named arguments to make it compatible with optimizers
that use a single list of parameters.

Your objective function can be defined as being callable using named arguments: func(foo=123, bar=3.
0, baz='hello') for a search-space with dimensions named ['foo', 'bar', 'baz']. But the opti-
mizer will only pass a single list x of unnamed arguments when calling the objective function: func(x=[123,
3.0, 'hello']). This wrapper converts your objective function with named arguments into one that ac-
cepts a list as argument, while doing the conversion automatically.

5.8. skopt.utils: Utils functions. 165

scikit-optimize Documentation, Release 0.7.4

The advantage of this is that you don’t have to unpack the list of arguments x yourself, which makes the code
easier to read and also reduces the risk of bugs if you change the number of dimensions or their order in the
search-space.

Parameters

dimensions [list(Dimension)] List of Dimension-objects for the search-space dimensions.

Returns

wrapped_func [callable] Wrapped objective function.

Examples

>>> # Define the search-space dimensions. They must all have names!
>>> from skopt.space import Real
>>> from skopt import forest_minimize
>>> from skopt.utils import use_named_args
>>> dim1 = Real(name='foo', low=0.0, high=1.0)
>>> dim2 = Real(name='bar', low=0.0, high=1.0)
>>> dim3 = Real(name='baz', low=0.0, high=1.0)
>>>
>>> # Gather the search-space dimensions in a list.
>>> dimensions = [dim1, dim2, dim3]
>>>
>>> # Define the objective function with named arguments
>>> # and use this function-decorator to specify the
>>> # search-space dimensions.
>>> @use_named_args(dimensions=dimensions)
... def my_objective_function(foo, bar, baz):
... return foo ** 2 + bar ** 4 + baz ** 8
>>>
>>> # Not the function is callable from the outside as
>>> # `my_objective_function(x)` where `x` is a list of unnamed arguments,
>>> # which then wraps your objective function that is callable as
>>> # `my_objective_function(foo, bar, baz)`.
>>> # The conversion from a list `x` to named parameters `foo`,
>>> # `bar`, `baz`
>>> # is done automatically.
>>>
>>> # Run the optimizer on the wrapped objective function which is called
>>> # as `my_objective_function(x)` as expected by `forest_minimize()`.
>>> result = forest_minimize(func=my_objective_function,
... dimensions=dimensions,
... n_calls=20, base_estimator="ET",
... random_state=4)
>>>
>>> # Print the best-found results.
>>> print("Best fitness:", result.fun)
Best fitness: 0.1948080835239698
>>> print("Best parameters:", result.x)
Best parameters: [0.44134853091052617, 0.06570954323368307, 0.17586123323419825]

Examples using skopt.utils.use_named_args

• Tuning a scikit-learn estimator with skopt

166 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

5.9 skopt.space.space: Space

User guide: See the Space define the optimization space section for further details.

space.space.Categorical(categories[, prior,
. . .])

Search space dimension that can take on categorical val-
ues.

space.space.Dimension Base class for search space dimensions.
space.space.Integer(low, high[, prior, . . .]) Search space dimension that can take on integer values.
space.space.Real(low, high[, prior, base, . . .]) Search space dimension that can take on any real value.
space.space.Space(dimensions) Initialize a search space from given specifications.

5.9.1 skopt.space.space.Categorical

class skopt.space.space.Categorical(categories, prior=None, transform=None, name=None)
Search space dimension that can take on categorical values.

Parameters

categories [list, shape=(n_categories,)] Sequence of possible categories.

prior [list, shape=(categories,), default=None] Prior probabilities for each category. By default
all categories are equally likely.

transform [“onehot”, “string”, “identity”, default=”onehot”]

• “identity”, the transformed space is the same as the original space.

• “string”, the transformed space is a string encoded

representation of the original space.

• “onehot”, the transformed space is a one-hot encoded representation of the original space.

name [str or None] Name associated with dimension, e.g., “colors”.

Attributes

bounds

name

prior

size

transformed_bounds

transformed_size

Methods

distance(self, a, b) Compute distance between category a and b.
inverse_transform(self, Xt) Inverse transform samples from the warped space

back into the original space.
rvs(self[, n_samples, random_state]) Draw random samples.

Continued on next page

5.9. skopt.space.space: Space 167

scikit-optimize Documentation, Release 0.7.4

Table 27 – continued from previous page
transform(self, X) Transform samples form the original space to a

warped space.

__init__(self, categories, prior=None, transform=None, name=None)
Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)
Compute distance between category a and b.

As categories have no order the distance between two points is one if a != b and zero otherwise.

Parameters

a [category] First category.

b [category] Second category.

inverse_transform(self, Xt)
Inverse transform samples from the warped space back into the original space.

rvs(self, n_samples=None, random_state=None)
Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

transform(self, X)
Transform samples form the original space to a warped space.

5.9.2 skopt.space.space.Dimension

class skopt.space.space.Dimension
Base class for search space dimensions.

Attributes

bounds

name

prior

size

transformed_bounds

transformed_size

Methods

inverse_transform(self, Xt) Inverse transform samples from the warped space
back into the original space.

rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, X) Transform samples form the original space to a

warped space.

168 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

inverse_transform(self, Xt)
Inverse transform samples from the warped space back into the original space.

rvs(self, n_samples=1, random_state=None)
Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

transform(self, X)
Transform samples form the original space to a warped space.

5.9.3 skopt.space.space.Integer

class skopt.space.space.Integer(low, high, prior=’uniform’, base=10, transform=None,
name=None, dtype=<class ’numpy.int64’>)

Search space dimension that can take on integer values.

Parameters

low [int] Lower bound (inclusive).

high [int] Upper bound (inclusive).

prior [“uniform” or “log-uniform”, default=”uniform”] Distribution to use when sampling ran-
dom integers for this dimension. - If "uniform", intgers are sampled uniformly between
the lower

and upper bounds.

• If "log-uniform", intgers are sampled uniformly between log(lower, base)
and log(upper, base) where log has base base.

base [int] The logarithmic base to use for a log-uniform prior. - Default 10, otherwise com-
monly 2.

transform [“identity”, “normalize”, optional] The following transformations are supported.

• “identity”, (default) the transformed space is the same as the original space.

• “normalize”, the transformed space is scaled to be between 0 and 1.

name [str or None] Name associated with dimension, e.g., “number of trees”.

dtype [str or dtype, default=np.int64] integer type which will be used in inverse_transform,
can be int, np.int16, np.uint32, np.int32, np.int64 (default). When set to int,
inverse_transform returns a list instead of a numpy array

Attributes

bounds

name

prior

size

5.9. skopt.space.space: Space 169

scikit-optimize Documentation, Release 0.7.4

transformed_bounds

transformed_size

Methods

distance(self, a, b) Compute distance between point a and b.
inverse_transform(self, Xt) Inverse transform samples from the warped space

back into the original space.
rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, X) Transform samples form the original space to a

warped space.

__init__(self, low, high, prior=’uniform’, base=10, transform=None, name=None, dtype=<class
’numpy.int64’>)

Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)
Compute distance between point a and b.

Parameters

a [int] First point.

b [int] Second point.

inverse_transform(self, Xt)
Inverse transform samples from the warped space back into the original space.

rvs(self, n_samples=1, random_state=None)
Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

transform(self, X)
Transform samples form the original space to a warped space.

5.9.4 skopt.space.space.Real

class skopt.space.space.Real(low, high, prior=’uniform’, base=10, transform=None,
name=None, dtype=<class ’float’>)

Search space dimension that can take on any real value.

Parameters

low [float] Lower bound (inclusive).

high [float] Upper bound (inclusive).

prior [“uniform” or “log-uniform”, default=”uniform”] Distribution to use when sampling ran-
dom points for this dimension. - If "uniform", points are sampled uniformly between the
lower

and upper bounds.

170 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

• If "log-uniform", points are sampled uniformly between log(lower, base)
and log(upper, base) where log has base base.

base [int] The logarithmic base to use for a log-uniform prior. - Default 10, otherwise com-
monly 2.

transform [“identity”, “normalize”, optional] The following transformations are supported.

• “identity”, (default) the transformed space is the same as the original space.

• “normalize”, the transformed space is scaled to be between 0 and 1.

name [str or None] Name associated with the dimension, e.g., “learning rate”.

dtype [str or dtype, default=np.float] float type which will be used in inverse_transform, can be
float.

Attributes

bounds

name

prior

size

transformed_bounds

transformed_size

Methods

distance(self, a, b) Compute distance between point a and b.
inverse_transform(self, Xt) Inverse transform samples from the warped space

back into the original space.
rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, X) Transform samples form the original space to a

warped space.

__init__(self, low, high, prior=’uniform’, base=10, transform=None, name=None, dtype=<class
’float’>)

Initialize self. See help(type(self)) for accurate signature.

distance(self, a, b)
Compute distance between point a and b.

Parameters

a [float] First point.

b [float] Second point.

inverse_transform(self, Xt)
Inverse transform samples from the warped space back into the original space.

rvs(self, n_samples=1, random_state=None)
Draw random samples.

Parameters

n_samples [int or None] The number of samples to be drawn.

5.9. skopt.space.space: Space 171

scikit-optimize Documentation, Release 0.7.4

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

transform(self, X)
Transform samples form the original space to a warped space.

5.9.5 skopt.space.space.Space

class skopt.space.space.Space(dimensions)
Initialize a search space from given specifications.

Parameters

dimensions [list, shape=(n_dims,)] List of search space dimensions. Each search dimension
can be defined either as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

Note: The upper and lower bounds are inclusive for Integer dimensions.

Attributes

bounds The dimension bounds, in the original space.

is_categorical Space contains exclusively categorical dimensions

is_partly_categorical Space contains any categorical dimensions

is_real Returns true if all dimensions are Real

n_dims The dimensionality of the original space.

transformed_bounds The dimension bounds, in the warped space.

transformed_n_dims The dimensionality of the warped space.

Methods

distance(self, point_a, point_b) Compute distance between two points in this space.
from_yaml(yml_path[, namespace]) Create Space from yaml configuration file
inverse_transform(self, Xt) Inverse transform samples from the warped space

back to the
rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, X) Transform samples from the original space into a

warped space.

__init__(self, dimensions)
Initialize self. See help(type(self)) for accurate signature.

property bounds
The dimension bounds, in the original space.

172 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

distance(self, point_a, point_b)
Compute distance between two points in this space.

Parameters

point_a [array] First point.

point_b [array] Second point.

classmethod from_yaml(yml_path, namespace=None)
Create Space from yaml configuration file

Parameters

yml_path [str] Full path to yaml configuration file, example YaML below: Space:

• Integer: low: -5 high: 5

• Categorical: categories: - a - b

• Real: low: 1.0 high: 5.0 prior: log-uniform

namespace [str, default=None]

Namespace within configuration file to use, will use first namespace if not provided

Returns

space [Space] Instantiated Space object

inverse_transform(self, Xt)

Inverse transform samples from the warped space back to the original space.

Parameters

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The samples to inverse trans-
form.

Returns

X [list of lists, shape=(n_samples, n_dims)] The original samples.

property is_categorical
Space contains exclusively categorical dimensions

property is_partly_categorical
Space contains any categorical dimensions

property is_real
Returns true if all dimensions are Real

property n_dims
The dimensionality of the original space.

rvs(self, n_samples=1, random_state=None)
Draw random samples.

The samples are in the original space. They need to be transformed before being passed to a model or
minimizer by space.transform().

Parameters

n_samples [int, default=1] Number of samples to be drawn from the space.

random_state [int, RandomState instance, or None (default)] Set random state to something
other than None for reproducible results.

5.9. skopt.space.space: Space 173

scikit-optimize Documentation, Release 0.7.4

Returns

points [list of lists, shape=(n_points, n_dims)] Points sampled from the space.

transform(self, X)
Transform samples from the original space into a warped space.

Note: this transformation is expected to be used to project samples into a suitable space for numeri-
cal optimization.

Parameters

X [list of lists, shape=(n_samples, n_dims)] The samples to transform.

Returns

Xt [array of floats, shape=(n_samples, transformed_n_dims)] The transformed samples.

property transformed_bounds
The dimension bounds, in the warped space.

property transformed_n_dims
The dimensionality of the warped space.

space.space.check_dimension(dimension[,
. . .])

Turn a provided dimension description into a dimension
object.

5.9.6 skopt.space.space.check_dimension

skopt.space.space.check_dimension(dimension, transform=None)
Turn a provided dimension description into a dimension object.

Checks that the provided dimension falls into one of the supported types. For a list of supported types, look at
the documentation of dimension below.

If dimension is already a Dimension instance, return it.

Parameters

dimension [Dimension] Search space Dimension. Each search dimension can be defined either
as

• a (lower_bound, upper_bound) tuple (for Real or Integer dimensions),

• a (lower_bound, upper_bound, "prior") tuple (for Real dimensions),

• as a list of categories (for Categorical dimensions), or

• an instance of a Dimension object (Real, Integer or Categorical).

transform [“identity”, “normalize”, “string”, “onehot” optional]

• For Categorical dimensions, the following transformations are supported.

– “onehot” (default) one-hot transformation of the original space.

– “string” string transformation of the original space.

– “identity” same as the original space.

• For Real and Integer dimensions, the following transformations are supported.

– “identity”, (default) the transformed space is the same as the original space.

174 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

– “normalize”, the transformed space is scaled to be between 0 and 1.

Returns

dimension [Dimension] Dimension instance.

5.10 skopt.space.transformers: transformers

User guide: See the transformers section for further details.

space.transformers.
CategoricalEncoder()

OneHotEncoder that can handle categorical variables.

space.transformers.Identity Identity transform.
space.transformers.LogN (base) Base N logarithm transform.
space.transformers.Normalize(low, high[,
is_int])

Scales each dimension into the interval [0, 1].

space.transformers.Pipeline(transformers) A lightweight pipeline to chain transformers.
space.transformers.Transformer Base class for all 1-D transformers.

5.10.1 skopt.space.transformers.CategoricalEncoder

class skopt.space.transformers.CategoricalEncoder
OneHotEncoder that can handle categorical variables.

Methods

fit(self, X) Fit a list or array of categories.
inverse_transform(self, Xt) Inverse transform one-hot encoded categories back

to their original
transform(self, X) Transform an array of categories to a one-hot en-

coded representation.

__init__(self)
Convert labeled categories into one-hot encoded features.

fit(self, X)
Fit a list or array of categories.

Parameters

X [array-like, shape=(n_categories,)] List of categories.

inverse_transform(self, Xt)

Inverse transform one-hot encoded categories back to their original representation.

Parameters

Xt [array-like, shape=(n_samples, n_categories)] One-hot encoded categories.

Returns

X [array-like, shape=(n_samples,)] The original categories.

5.10. skopt.space.transformers: transformers 175

scikit-optimize Documentation, Release 0.7.4

transform(self, X)
Transform an array of categories to a one-hot encoded representation.

Parameters

X [array-like, shape=(n_samples,)] List of categories.

Returns

Xt [array-like, shape=(n_samples, n_categories)] The one-hot encoded categories.

5.10.2 skopt.space.transformers.Identity

class skopt.space.transformers.Identity
Identity transform.

Methods

fit
inverse_transform
transform

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

5.10.3 skopt.space.transformers.LogN

class skopt.space.transformers.LogN(base)
Base N logarithm transform.

Methods

fit
inverse_transform
transform

__init__(self, base)
Initialize self. See help(type(self)) for accurate signature.

5.10.4 skopt.space.transformers.Normalize

class skopt.space.transformers.Normalize(low, high, is_int=False)
Scales each dimension into the interval [0, 1].

Parameters

low [float] Lower bound.

high [float] Higher bound.

is_int [bool, default=True] Round and cast the return value of inverse_transform to in-
teger. Set to True when applying this transform to integers.

176 Chapter 5. API Reference

scikit-optimize Documentation, Release 0.7.4

Methods

fit
inverse_transform
transform

__init__(self, low, high, is_int=False)
Initialize self. See help(type(self)) for accurate signature.

5.10.5 skopt.space.transformers.Pipeline

class skopt.space.transformers.Pipeline(transformers)
A lightweight pipeline to chain transformers.

Parameters

transformers [list] A list of Transformer instances.

Methods

fit
inverse_transform
transform

__init__(self, transformers)
Initialize self. See help(type(self)) for accurate signature.

5.10.6 skopt.space.transformers.Transformer

class skopt.space.transformers.Transformer
Base class for all 1-D transformers.

Methods

fit
inverse_transform
transform

__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

5.10. skopt.space.transformers: transformers 177

scikit-optimize Documentation, Release 0.7.4

178 Chapter 5. API Reference

BIBLIOGRAPHY

[R8d4c5fa7c0c3-1] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[R91c6cd8711c5-1] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

179

scikit-optimize Documentation, Release 0.7.4

180 Bibliography

INDEX

Symbols
__init__() (skopt.BayesSearchCV method), 99
__init__() (skopt.Optimizer method), 103
__init__() (skopt.Space method), 105
__init__() (skopt.callbacks.CheckpointSaver

method), 123
__init__() (skopt.callbacks.DeadlineStopper

method), 124
__init__() (skopt.callbacks.DeltaXStopper method),

124
__init__() (skopt.callbacks.DeltaYStopper method),

125
__init__() (skopt.callbacks.EarlyStopper method),

125
__init__() (skopt.callbacks.TimerCallback method),

125
__init__() (skopt.callbacks.VerboseCallback

method), 126
__init__() (skopt.learning.ExtraTreesRegressor

method), 129
__init__() (skopt.learning.GaussianProcessRegressor

method), 133
__init__() (skopt.learning.GradientBoostingQuantileRegressor

method), 136
__init__() (skopt.learning.RandomForestRegressor

method), 140
__init__() (skopt.optimizer.Optimizer method), 144
__init__() (skopt.space.space.Categorical method),

168
__init__() (skopt.space.space.Dimension method),

169
__init__() (skopt.space.space.Integer method), 170
__init__() (skopt.space.space.Real method), 171
__init__() (skopt.space.space.Space method), 172
__init__() (skopt.space.transformers.CategoricalEncoder

method), 175
__init__() (skopt.space.transformers.Identity

method), 176
__init__() (skopt.space.transformers.LogN method),

176
__init__() (skopt.space.transformers.Normalize

method), 177

__init__() (skopt.space.transformers.Pipeline
method), 177

__init__() (skopt.space.transformers.Transformer
method), 177

A
apply() (skopt.learning.ExtraTreesRegressor method),

129
apply() (skopt.learning.RandomForestRegressor

method), 140
ask() (skopt.Optimizer method), 103
ask() (skopt.optimizer.Optimizer method), 144

B
base_minimize() (in module skopt.optimizer), 146
BayesSearchCV (class in skopt), 95
bench1() (in module skopt.benchmarks), 121
bench1_with_time() (in module

skopt.benchmarks), 121
bench2() (in module skopt.benchmarks), 121
bench3() (in module skopt.benchmarks), 121
bench4() (in module skopt.benchmarks), 121
bench5() (in module skopt.benchmarks), 122
bounds() (skopt.Space property), 105
bounds() (skopt.space.space.Space property), 172
branin() (in module skopt.benchmarks), 122

C
Categorical (class in skopt.space.space), 167
CategoricalEncoder (class in

skopt.space.transformers), 175
check_dimension() (in module skopt.space.space),

174
CheckpointSaver (class in skopt.callbacks), 123
cook_estimator() (in module skopt.utils), 161
copy() (skopt.Optimizer method), 104
copy() (skopt.optimizer.Optimizer method), 145

D
DeadlineStopper (class in skopt.callbacks), 124
decision_function() (skopt.BayesSearchCV

method), 99

181

scikit-optimize Documentation, Release 0.7.4

decision_path() (skopt.learning.ExtraTreesRegressor
method), 129

decision_path() (skopt.learning.RandomForestRegressor
method), 140

DeltaXStopper (class in skopt.callbacks), 124
DeltaYStopper (class in skopt.callbacks), 124
Dimension (class in skopt.space.space), 168
dimensions_aslist() (in module skopt.utils), 162
distance() (skopt.Space method), 105
distance() (skopt.space.space.Categorical method),

168
distance() (skopt.space.space.Integer method), 170
distance() (skopt.space.space.Real method), 171
distance() (skopt.space.space.Space method), 172
dummy_minimize() (in module skopt), 107
dummy_minimize() (in module skopt.optimizer), 148
dump() (in module skopt), 108
dump() (in module skopt.utils), 163

E
EarlyStopper (class in skopt.callbacks), 125
expected_minimum() (in module skopt), 109
expected_minimum() (in module skopt.utils), 162
expected_minimum_random_sampling() (in

module skopt), 109
expected_minimum_random_sampling() (in

module skopt.utils), 163
ExtraTreesRegressor (class in skopt.learning),

126

F
feature_importances_()

(skopt.learning.ExtraTreesRegressor prop-
erty), 129

feature_importances_()
(skopt.learning.RandomForestRegressor
property), 140

fit() (skopt.BayesSearchCV method), 99
fit() (skopt.learning.ExtraTreesRegressor method),

129
fit() (skopt.learning.GaussianProcessRegressor

method), 133
fit() (skopt.learning.GradientBoostingQuantileRegressor

method), 136
fit() (skopt.learning.RandomForestRegressor

method), 141
fit() (skopt.space.transformers.CategoricalEncoder

method), 175
forest_minimize() (in module skopt), 110
forest_minimize() (in module skopt.optimizer),

149
from_yaml() (skopt.Space class method), 105
from_yaml() (skopt.space.space.Space class method),

173

G
gaussian_acquisition_1D() (in module

skopt.acquisition), 118
gaussian_ei() (in module skopt.acquisition), 118
gaussian_lcb() (in module skopt.acquisition), 119
gaussian_pi() (in module skopt.acquisition), 120
GaussianProcessRegressor (class in

skopt.learning), 131
gbrt_minimize() (in module skopt), 112
gbrt_minimize() (in module skopt.optimizer), 152
get_params() (skopt.BayesSearchCV method), 99
get_params() (skopt.learning.ExtraTreesRegressor

method), 130
get_params() (skopt.learning.GaussianProcessRegressor

method), 133
get_params() (skopt.learning.GradientBoostingQuantileRegressor

method), 136
get_params() (skopt.learning.RandomForestRegressor

method), 141
get_result() (skopt.Optimizer method), 104
get_result() (skopt.optimizer.Optimizer method),

145
gp_minimize() (in module skopt), 114
gp_minimize() (in module skopt.optimizer), 154
GradientBoostingQuantileRegressor (class

in skopt.learning), 136

I
Identity (class in skopt.space.transformers), 176
Integer (class in skopt.space.space), 169
inverse_transform() (skopt.BayesSearchCV

method), 100
inverse_transform() (skopt.Space method), 106
inverse_transform()

(skopt.space.space.Categorical method),
168

inverse_transform()
(skopt.space.space.Dimension method), 169

inverse_transform() (skopt.space.space.Integer
method), 170

inverse_transform() (skopt.space.space.Real
method), 171

inverse_transform() (skopt.space.space.Space
method), 173

inverse_transform()
(skopt.space.transformers.CategoricalEncoder
method), 175

is_categorical() (skopt.Space property), 106
is_categorical() (skopt.space.space.Space prop-

erty), 173
is_partly_categorical() (skopt.Space prop-

erty), 106
is_partly_categorical()

(skopt.space.space.Space property), 173

182 Index

scikit-optimize Documentation, Release 0.7.4

is_real() (skopt.Space property), 106
is_real() (skopt.space.space.Space property), 173

L
load() (in module skopt), 117
load() (in module skopt.utils), 164
log_marginal_likelihood()

(skopt.learning.GaussianProcessRegressor
method), 133

LogN (class in skopt.space.transformers), 176

N
n_dims() (skopt.Space property), 106
n_dims() (skopt.space.space.Space property), 173
Normalize (class in skopt.space.transformers), 176

O
Optimizer (class in skopt), 101
Optimizer (class in skopt.optimizer), 142

P
partial_dependence() (in module skopt.plots),

157
Pipeline (class in skopt.space.transformers), 177
plot_convergence() (in module skopt.plots), 158
plot_evaluations() (in module skopt.plots), 159
plot_objective() (in module skopt.plots), 159
plot_regret() (in module skopt.plots), 160
point_asdict() (in module skopt.utils), 164
point_aslist() (in module skopt.utils), 165
predict() (skopt.BayesSearchCV method), 100
predict() (skopt.learning.ExtraTreesRegressor

method), 130
predict() (skopt.learning.GaussianProcessRegressor

method), 134
predict() (skopt.learning.GradientBoostingQuantileRegressor

method), 136
predict() (skopt.learning.RandomForestRegressor

method), 141
predict_log_proba() (skopt.BayesSearchCV

method), 100
predict_proba() (skopt.BayesSearchCV method),

100

R
RandomForestRegressor (class in skopt.learning),

138
Real (class in skopt.space.space), 170
run() (skopt.Optimizer method), 104
run() (skopt.optimizer.Optimizer method), 145
rvs() (skopt.Space method), 106
rvs() (skopt.space.space.Categorical method), 168
rvs() (skopt.space.space.Dimension method), 169

rvs() (skopt.space.space.Integer method), 170
rvs() (skopt.space.space.Real method), 171
rvs() (skopt.space.space.Space method), 173

S
sample_y() (skopt.learning.GaussianProcessRegressor

method), 134
score() (skopt.BayesSearchCV method), 100
score() (skopt.learning.ExtraTreesRegressor method),

130
score() (skopt.learning.GaussianProcessRegressor

method), 135
score() (skopt.learning.GradientBoostingQuantileRegressor

method), 137
score() (skopt.learning.RandomForestRegressor

method), 141
set_params() (skopt.BayesSearchCV method), 101
set_params() (skopt.learning.ExtraTreesRegressor

method), 131
set_params() (skopt.learning.GaussianProcessRegressor

method), 135
set_params() (skopt.learning.GradientBoostingQuantileRegressor

method), 137
set_params() (skopt.learning.RandomForestRegressor

method), 142
skopt.acquisition (module), 118
skopt.benchmarks (module), 120
skopt.callbacks (module), 122
skopt.learning (module), 126
skopt.optimizer (module), 142
skopt.plots (module), 157
skopt.space.space (module), 167
skopt.space.transformers (module), 175
skopt.utils (module), 161
Space (class in skopt), 104
Space (class in skopt.space.space), 172

T
tell() (skopt.Optimizer method), 104
tell() (skopt.optimizer.Optimizer method), 145
TimerCallback (class in skopt.callbacks), 125
total_iterations() (skopt.BayesSearchCV prop-

erty), 101
transform() (skopt.BayesSearchCV method), 101
transform() (skopt.Space method), 106
transform() (skopt.space.space.Categorical method),

168
transform() (skopt.space.space.Dimension method),

169
transform() (skopt.space.space.Integer method), 170
transform() (skopt.space.space.Real method), 172
transform() (skopt.space.space.Space method), 174
transform() (skopt.space.transformers.CategoricalEncoder

method), 175

Index 183

scikit-optimize Documentation, Release 0.7.4

transformed_bounds() (skopt.Space property),
107

transformed_bounds() (skopt.space.space.Space
property), 174

transformed_n_dims() (skopt.Space property),
107

transformed_n_dims() (skopt.space.space.Space
property), 174

Transformer (class in skopt.space.transformers), 177

U
update_next() (skopt.Optimizer method), 104
update_next() (skopt.optimizer.Optimizer method),

145
use_named_args() (in module skopt.utils), 165

V
VerboseCallback (class in skopt.callbacks), 125

184 Index

	Welcome to scikit-optimize
	Installation
	Release History

	Getting started
	Finding a minimum

	User Guide
	Acquisition
	BayesSearchCV, a GridSearchCV compatible estimator
	Callbacks
	Optimizer, an ask-and-tell interface
	skopt’s top level minimization functions
	Plotting tools
	Space define the optimization space
	Utility functions

	Examples
	Miscellaneous examples
	Plotting functions

	API Reference
	skopt: module
	skopt.acquisition: Acquisition
	skopt.benchmarks: A collection of benchmark problems.
	skopt.callbacks: Callbacks
	skopt.learning: Machine learning extensions for model-based optimization.
	skopt.optimizer: Optimizer
	skopt.plots: Plotting functions.
	skopt.utils: Utils functions.
	skopt.space.space: Space
	skopt.space.transformers: transformers

	Bibliography
	Index

